
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Dr.B.Vinodhini

Associate Professor

Department of Computer Science and Engineering

COURSE NAME : OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II PROCESS SCHEDULING AND SYNCHRONIZATION

Topic: Deadlock avoidance

4/3/2025 23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-ASP/CSE 2

Dead Lock Handling Methods
Dead lock Avoidance

 Requires that the system has some additional a priori information available

 Simplest and most useful model requires that each process declare the maximum number of

resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the resource-allocation state to

ensure that there can never be a circular-wait condition

 Resource-allocation state is defined by the number of available and allocated resources, and

the maximum demands of the processes

4/3/2025 23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-ASP/CSE 3

Dead Lock Handling Methods
Dead lock Avoidance-Safe State

When a process requests an available resource, system must decide if immediate allocation

leaves the system in a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes in

the systems such that for each Pi, the resources that Pi can still request can be satisfied by

currently available resources + resources held by all the Pj, with j < I

That is:

If Pi resource needs are not immediately available, then Pi can wait until all Pj have

finished

When Pj is finished, Pi can obtain needed resources, execute, return allocated resources,

and terminate

When Pi terminates, Pi +1 can obtain its needed resources, and so on

4/3/2025 23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-ASP/CSE 4

Dead Lock Handling Methods
Dead lock Avoidance-Safe State

Basic Facts

 If a system is in safe state  no deadlocks

 If a system is in unsafe state  possibility of deadlock

 Avoidance  ensure that a system will never enter an

unsafe state.

Avoidance Algorithms

 Single instance of a resource type

 Use a resource-allocation graph

 Multiple instances of a resource type

 Use the banker’s algorithm

4/3/2025 23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-ASP/CSE 5

Dead Lock Handling Methods

Claim edge Pi  Rj indicated that process Pj may request resource Rj;

represented by a dashed line

Claim edge converts to request edge when a process requests a

resource

Request edge converted to an assignment edge when the resource is

allocated to the process

When a resource is released by a process, assignment edge reconverts

to a claim edge

Resources must be claimed a priori in the system

4/3/2025 23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-ASP/CSE 6

Dead Lock Handling Methods

Resource-allocation graph Algorithms

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the request edge to an assignment edge

does not result in the formation of a cycle in the resource allocation graph

4/3/2025 23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-ASP/CSE 7

Dead Lock Handling Methods
Avoidance Algorithms-Bankers Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a finite

amount of time

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k instances of

resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k

instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k

instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to

complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then process Pi wants k
instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since process has
exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since resources are not
available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Example (Cont.)

 The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>

satisfies safety criteria

Example: P1 Request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>

satisfies safety requirement

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-
ASP/CSE

References

1. Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth
Edition, Wiley India Pvt Ltd, 2009.

2 . Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition,
Pearson Education, 2010.

4/3/2025 14

23CST202- OPERATING SYSTEMS-Deadlock model -Dr.B.Vinodhini-
ASP/CSE

4/3/2025 15

