
Fundamentals of the Analysis of Algorithm Efficiency

• Analysis Framework

• Asymptotic Notations and its properties

• Mathematical analysis of Recursive algorithms

• Mathematical analysis of Non - Recursive algorithms

2/28/2024 DAA-UNIT I-M.Shobana (AP/CSE) 1



Asymptotic Notations and its properties

• Analysis framework – Efficiency – order of growth

• Order of growth – change in order of input size

• Study of performance changes of algorithm with change in order of 

input  Asymptotic Analysis 

• Compare and Rank order of growth  3 Notations

• Mathematical tool to represent the time complexity of algorithm for 

Asymptotic Analysis is Asymptotic Notation

• Notations 

– Big O Notation (Worst-case efficiency)

– Big Ω Notation (Best-case efficiency)

– Big Θ Notation (Average-case efficiency)



Big O Notation (Worst-case efficiency)

• Upper bound of the running time of an algorithm

• O(g(n)) = { f(n): there exist positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 }

• f(n) ∈ O (g(n))



n f(n) = 100n+300 g(n) = 6n2

1 400 6

2 500 24

3 600 54

4 700 96

5 800 150

.

.

10 1300 600

.

15 1800 1350

20 2300 2400

21 2400 2646

22 2500 2904

23 2600 3174

Big O Notation (Worst-case efficiency)



Big O Notation (Worst-case efficiency) - Example

What is n0 here ?



Big Ω Notation (Best-case efficiency)

• lower bound of the running time of the algorithm

• Ω(g(n)) = { f(n): there exist positive constants c and n0 such that 

0 ≤ cg(n) ≤ f(n) for all n ≥ n0 }



Big Θ Notation (Average-case efficiency)

• Encloses the function from above and below

• upper and the lower bound of the running time of algorithm

• Θ(g(n)) = { f(n): there exist positive constants c1, c2 and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 }


