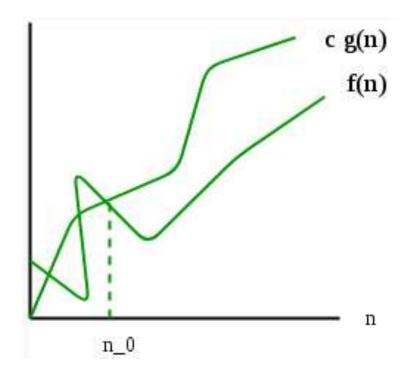
Fundamentals of the Analysis of Algorithm Efficiency

- Analysis Framework
- Asymptotic Notations and its properties
- Mathematical analysis of Recursive algorithms

• Mathematical analysis of Non - Recursive algorithms

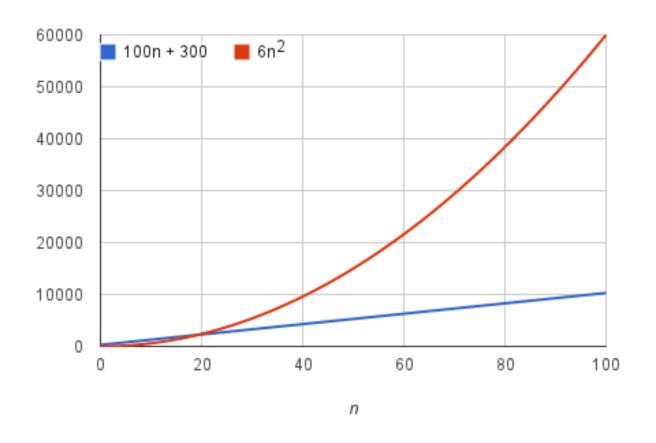
Asymptotic Notations and its properties


- Analysis framework Efficiency order of growth
- Order of growth change in order of input size
- Study of performance changes of algorithm with change in order of input → *Asymptotic Analysis*
- Compare and Rank order of growth \rightarrow 3 Notations
- Mathematical tool to represent the time complexity of algorithm for Asymptotic Analysis is *Asymptotic Notation*

• *Notations*

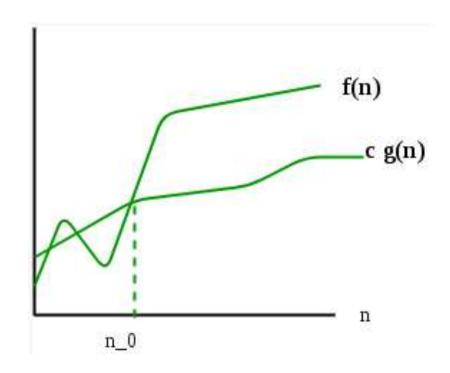
- Big O Notation (Worst-case efficiency)
- Big Ω Notation (Best-case efficiency)
- Big Θ Notation (Average-case efficiency)

Big O Notation (Worst-case efficiency)

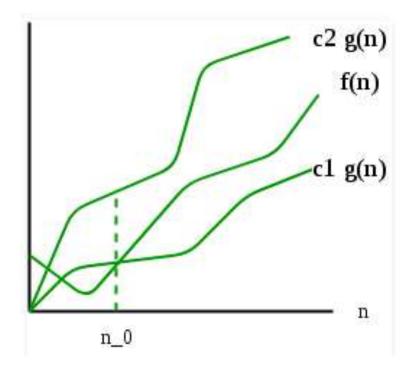

- Upper bound of the running time of an algorithm
- $O(g(n)) = \{ f(n): \text{ there exist positive constants c and } n0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n0 \}$
- $f(n) \in O(g(n))$

Big O Notation (Worst-case efficiency)

n	f(n) = 100n + 300	$g(n) = 6n^2$
1	400	6
2	500	24
3	600	54
4	700	96
5	800	150
10	1300	600
15	1800	1350
20	2300	2400
21	2400	2646
22	2500	2904
23	2600	3174


Big O Notation (Worst-case efficiency) - Example

What is n_0 here?


Big Ω Notation (Best-case efficiency)

- lower bound of the running time of the algorithm
- $\Omega(g(n)) = \{ f(n): \text{ there exist positive constants c and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

Big Θ Notation (Average-case efficiency)

- Encloses the function from above and below
- upper and the lower bound of the running time of algorithm
- $\Theta(g(n)) = \{ f(n): \text{ there exist positive constants c1, c2 and n0}$ such that $0 \le c1g(n) \le f(n) \le c2g(n) \text{ for all } n \ge n0 \}$

