Fundamentals of the Analysis of Algorithm Efficiency

* Analysis Framework

« Asymptotic Notations and Its properties
» Mathematical analysis of Recursive algorithms
@l analysis of Non - Recursive algorithms

2/28/2024 DAA-UNIT I-M.Shobana (AP/CSE)



Asymptotic Notations and Its properties

Analysis framework — Efficiency — order of growth
Order of growth — change in order of input size

Study of performance changes of algorithm with change in order of
Input > Asymptotic Analysis

Compare and Rank order of growth = 3 Notations

Mathematical tool to represent the time complexity of algorithm for
Asymptotic Analysis is Asymptotic Notation

Notations

— Big O Notation (Worst-case efficiency)
— Big Q Notation (Best-case efficiency)

— Big © Notation (Average-case efficiency)




Big O Notation (Worst-case efficiency)

« Upper bound of the running time of an algorithm
* 0O(g(n)) ={ f(n): there exist positive constants ¢ and n0
such that 0 < f(n) <cg(n) for alln>n0 }

* 1(n) €0 (9(n))

A

c g(n)
f(n)

s - .- -



Big O Notation (Worst-case efficiency)

n f(n) = 100n+300 g(n) = 6n?
1 400 6

2 500 24

3 600 54

4 700 96

3) 800 150
10 1300 600
15 1800 1350
20 2300 2400
21 2400 2646
22 2500 2904
23 2600 3174




Big O Notation (Worst-case efficiency) - Example

60000 |
W 100n+300 (M 6n2
50000
40000
30000

20000

10000

0

0 20 40 60 80 100

n

What is N, here ?




Big Q2 Notation (Best-case efficiency)

 lower bound of the running time of the algorithm
* Q(g(n)) = { f(n): there exist positive constants ¢ and n, such that

0 <cg(n) <f(n) foralln>n, }

- e e o-

f(n)

c g(n)



Big ® Notation (Average-case efficiency)

» Encloses the function from above and below
 upper and the lower bound of the running time of algorithm
* O(g(n)) = { f(n): there exist positive constants c1, ¢c2 and n0

such that 0 <clg(n) <f(n) <c2g(n) for alln>n0 }

c2 g(n)
f(n)

cl g(n)

- -




