

Unit III – Dynamic Programming

- Dynamic Programming
 - Computing a Binomial Coefficient
 - Warshall's algorithm
 - Floyd's algorithm
 - Optimal Binary Search Trees
 - Knapsack Problem and Memory functions

- Compute the *Transitive closure* of a directed graph
- The *transitive closure* of a directed graph with *n* vertices can be defined as the *n* × *n* boolean matrix *T* = {*tij*}, in which the element in the *i*th row and the *j*th column is 1 if there exists a nontrivial path (i.e., directed path of a positive length) from the *i*th vertex to the *j*th vertex; otherwise, *tij* is 0.
- Example: directed graph (digraph)

• Adjacency Matrix - $A = \{a_{ij}\}\$ of a digraph is the boolean matrix that has 1 in the ith row and jth column if and only if there is a directed edge from ith vertex to jth vertex.

Transitive closure

	а	b	С	d
а	1	1	1	1
b	1	1	1	1
с	0	0	0	0
d	1	1	1	1

- series of $n \times n$ boolean matrices: $R(0), \ldots, R(k-1), R(k), \ldots, R(n)$.
- Matrix value is 1 using the formula as follows

$$r_{ij}^{(k)} = r_{ij}^{(k-1)}$$
 or $\left(r_{ik}^{(k-1)} \text{ and } r_{kj}^{(k-1)}\right)$

Rule for changing zeros in Warshall's algorithm.

Warshall's algorithm – Example

 $A = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 0 \\ b & 0 & 0 & 0 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 0 & 1 & 0 \end{bmatrix}$

R ₀	а	b	С	D
a	0	1	0	0
b	0	0	0	1
с	0	0	0	0
d	1	0	1	0

R ₁	a	b	С	D
a	0	1	0	0
b	0	0	0	1
с	0	0	0	0
d	1	1	1	0

R ₂	а	b	С	D
a	0	1	0	1
b	0	0	0	1
с	0	0	0	0
d	1	1	1	1

R ₃	a	b	С	D
a	0	1	0	1
b	0	0	0	1
с	0	0	0	0
d	1	1	1	1

R ₄	а	b	С	D
a	1	1	1	1
b	1	1	1	1
c	0	0	0	0
d	1	1	1	1

Warshall's algorithm - Algorithm

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices //Output: The transitive closure of the digraph $R^{(0)} \leftarrow A$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j]$ or $(R^{(k-1)}[i, k]$ and $R^{(k-1)}[k, j])$ return $R^{(n)}$

Warshall's algorithm - Example

Adjacency Matrix

	0	1	2	з	4
0	0	1	1	0	0
1	0	0	1	0	1
2	0	0	0	1	0
3	0	0	0	0	1
4	0	0	0	0	0