

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE – 641035

DEPARTMENT OF MECHATRONICS ENGINEERING

The Generalized Delta Rule (GDR) is a learning algorithm used in Artificial Neural Networks (ANNs), particularly in multilayer perceptrons (MLPs). It is an extension of the Delta Rule, which is used for training single-layer perceptrons. The GDR enables training multi-layer networks using error backpropagation, making it fundamental in Backpropagation Networks (BPNs).

Why is the Generalized Delta Rule Important?

- ✓ Allows training of multi-layer networks
- ✓ Handles non-linearly separable problems (unlike the basic Delta Rule)
- \checkmark Uses gradient descent to minimize error
- \checkmark Enables deep learning models to learn from data

Mathematical Foundation of the Generalized Delta Rule

Basic Concept

The **goal** of the Generalized Delta Rule is to **minimize the total error** between the predicted output and the actual target output in a neural network. It achieves this by **adjusting the weights** using the **gradient descent algorithm**.

1. Error Calculation

For a given training example (x, t), where:

- x = input vector
- t = target output vector
- *o* = actual output of the network
- w_{ij} = weight from neuron i to neuron j

The Mean Squared Error (MSE) is given by:

$$E=rac{1}{2}\sum_k(t_k-o_k)^2$$

where k represents the output neurons.

2. Weight Adjustment Using Gradient Descent

The weight update rule follows:

$$\Delta w_{ij} = -\eta rac{\partial E}{\partial w_{ij}}$$

where:

- η = learning rate (controls how fast weights are updated)
- $\frac{\partial E}{\partial w_{ij}}$ = gradient of the error with respect to the weight

This equation ensures that weights are updated in the direction that reduces the error.

3. Backpropagation and the Generalized Delta Rule

Forward Pass

- 1. Input layer receives inputs $x_1, x_2, ... x_n$.
- Neurons in the hidden layer compute weighted sums and apply an activation function (usually sigmoid or ReLU).
- 3. The **output layer** computes the final output o_k .

Backward Pass (Error Propagation)

1. Compute the **error** at the output layer:

$$\delta_k = (t_k - o_k) f'(net_k)$$

where $f'(net_k)$ is the derivative of the activation function.

3. Backpropagation and the Generalized Delta Rule

Forward Pass

- 1. Input layer receives inputs $x_1, x_2, ..., x_n$.
- Neurons in the hidden layer compute weighted sums and apply an activation function (usually sigmoid or ReLU).
- 3. The **output layer** computes the final output o_k .

Backward Pass (Error Propagation)

1. Compute the **error** at the output layer:

$$\delta_k = (t_k - o_k) f'(net_k)$$

where $f'(net_k)$ is the derivative of the activation function.

Properties of the Generalized Delta Rule

- ✓ Uses Backpropagation for learning in multi-layer networks.
- \checkmark Minimizes the total error in the network.
- ✓ Works with differentiable activation functions (like sigmoid, tanh, ReLU).
- ✓ Can handle non-linearly separable problems (unlike the Perceptron Learning Rule).

5. Advantages and Limitations of the Generalized Delta Rule

Advantages

- Enables deep learning by training multi-layer networks.
- Efficient learning using gradient descent.
- Works well for complex pattern recognition tasks.

Limitations

- Slow convergence for large networks.
- Gets stuck in local minima in some cases.
- Requires differentiable activation functions (not suitable for step functions).

6. Applications of the Generalized Delta Rule

- ✓ Handwriting Recognition
- ✓ Image Classification
- ✓ Speech Processing
- ✓ Medical Diagnosis
- ✓ Financial Prediction