

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE – 641035



## DEPARTMENT OF MECHATRONICS ENGINEERING

A Radial Basis Function Network (RBFN) is a type of artificial neural network used for classification, function approximation, and regression problems. It is a three-layered feedforward network that uses radial basis functions as activation functions.

### Why RBFN?

Fast learning compared to backpropagation networks (BPN).Efficient function approximation in high-dimensional spaces.Handles complex, non-linear problems well.Good generalization with fewer neurons than MLPs.

### **Applications of RBFN**

- $\checkmark$  Pattern Recognition Face, speech, and handwriting recognition.
- $\checkmark$  Function Approximation Time-series prediction, weather forecasting.
- ✓ Control Systems Robotics, process control.
- ✓ Medical Diagnosis Disease classification.

### 2. Architecture of Radial Basis Function Network (RBFN)

RBFN consists of three layers:

### 1. Input Layer

- Passes the input **directly** to the hidden layer.
- No computations are performed at this layer.

## 3. Backpropagation and the Generalized Delta Rule

## **Forward Pass**

- 1. Input layer receives inputs  $x_1, x_2, ... x_n$ .
- Neurons in the hidden layer compute weighted sums and apply an activation function (usually sigmoid or ReLU).
- 3. The output layer computes the final output ok.

### **Backward Pass (Error Propagation)**

1. Compute the error at the output layer:

$$\delta_k = (t_k - o_k)f'(net_k)$$

where  $f'(net_k)$  is the derivative of the activation function.

## 3. Output Layer

Computes a weighted sum of hidden neuron activations:

$$y_k = \sum_i w_{ik} \phi_i(x)$$

where  $w_{ik}$  are the weights from the hidden layer to the output layer.

# 3. Learning Algorithm in RBFN

RBFN uses a three-step learning process:

## 1. Select Centers (Unsupervised Learning)

• Centers c<sub>i</sub> are chosen using clustering algorithms like K-means or randomly from training data.

## 2. Determine Spread ( $\sigma_i$ )

- · The spread controls how localized each RBF neuron is.
- It is usually set as:

$$\sigma = \frac{d_{\max}}{\sqrt{2N}}$$

where  $d_{\max}$  is the maximum distance between centers, and N is the number of centers.

# 3. Compute Weights (Supervised Learning)

Weights w<sub>ik</sub> are optimized using Least Squares Estimation (LSE):

$$W=\Phi^+T$$

where:

- Φ<sup>+</sup> is the pseudo-inverse of the activation matrix.
- T is the target output vector.

### Comparison: RBFN vs. Backpropagation Network (BPN)

| Feature             | RBFN                    | BPN (MLP with<br>Backpropagation) |
|---------------------|-------------------------|-----------------------------------|
|                     |                         |                                   |
| Activation Function | Radial Basis (Gaussian) | Sigmoid, Tanh, ReLU               |
| Learning Type       | Hybrid (Unsupervised +  | Supervised (Backpropagation)      |

|                      | Supervised)              |                              |
|----------------------|--------------------------|------------------------------|
| Training Speed       | Faster (LSE for weights) | Slower (Gradient Descent)    |
| Performance on Noisy | Good                     | Moderate                     |
| Data                 |                          |                              |
| Generalization       | Good with proper spread  | Needs large datasets         |
| Convergence          | Faster                   | Slower, risk of local minima |

### 5. Advantages and Disadvantages of RBFN

#### Advantages

- Fast training due to linear weight optimization.
- Handles non-linearity well using radial basis functions.
- Works well for function approximation and classification.
- Good interpretability with fewer neurons.

#### Disadvantages

- Needs careful selection of centers (clustering-based).
- Sensitive to spread (σ\sigmaσ) large spread causes over-generalization, small spread causes poor generalization.
- Not efficient for large datasets (requires many basis functions).