

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE – 641035

DEPARTMENT OF MECHATRONICS ENGINEERING

In fuzzy logic, relations between elements of different sets are represented using fuzzy relations. These relations extend classical relations by allowing degrees of membership between elements.

A fuzzy relation R between two universes X and Y is defined as:

where R(x,y) represents the membership degree of the pair (x,y) in the relation R.

2. Composition of Fuzzy Relations

Composition of fuzzy relations is used to derive a relationship between elements of different sets through an intermediate set. It is useful in multi-stage decision-making and inference processes.

2.1 Definition

Given two fuzzy relations:

- R between sets X and Y, denoted as $R: X \times Y$.
- ullet S between sets Y and Z, denoted as S:Y imes Z.

The composition of R and S, denoted as $R\circ S$, results in a fuzzy relation between X and Z, i.e., $R\circ S:X\times Z$.

2.2 Max-Min Composition

The most commonly used composition method in fuzzy logic is the Max-Min composition:

$$(R\circ S)(x,z)=\max_{y\in Y}\min(R(x,y),S(y,z))$$

This means that for each pair (x, z), the relation strength is determined by taking the **minimum** of corresponding membership values from R and S, and then choosing the **maximum** among these values.

Example: Max-Min Composition

Let:

$$R = \begin{bmatrix} 0.2 & 0.7 \\ 0.5 & 0.9 \end{bmatrix}$$

between sets X and Y, and

between sets X and Y, and

$$S = egin{bmatrix} 0.8 & 0.3 \ 0.6 & 0.5 \end{bmatrix}$$

between sets Y and Z.

The composition $R\circ S$ is computed as:

For (x_1, z_1) :

$$\max(\min(0.2, 0.8), \min(0.7, 0.6)) = \max(0.2, 0.6) = 0.6$$

For (x_1, z_2) :

$$\max(\min(0.2,0.3),\min(0.7,0.5)) = \max(0.2,0.5) = 0.5$$

For (x_2, z_1) :

$$\max(\min(0.5, 0.8), \min(0.9, 0.6)) = \max(0.5, 0.6) = 0.6$$

For (x_2, z_2) :

$$\max(\min(0.5, 0.3), \min(0.9, 0.5)) = \max(0.3, 0.5) = 0.5$$

Thus, the resulting composition matrix is:

$$R\circ S=egin{bmatrix} 0.6 & 0.5 \ 0.6 & 0.5 \end{bmatrix}$$

2.3 Max-Product Composition

Another method is the **Max-Product composition**, where:

$$(R\circ S)(x,z)=\max_{y\in Y}(R(x,y) imes S(y,z))$$

Here, the **product** replaces the minimum operation.

Example: Max-Product Composition

Using the same matrices R and S, the computation is:

For (x_1, z_1) :

$$\max(0.2 \times 0.8, 0.7 \times 0.6) = \max(0.16, 0.42) = 0.42$$

For (x_1, z_2) :

$$\max(0.2 \times 0.3, 0.7 \times 0.5) = \max(0.06, 0.35) = 0.35$$

For (x_2, z_1) :

$$\max(0.5 \times 0.8, 0.9 \times 0.6) = \max(0.4, 0.54) = 0.54$$

For (x_2, z_2) :

$$\max(0.5 \times 0.3, 0.9 \times 0.5) = \max(0.15, 0.45) = 0.45$$

Thus, the Max-Product composition matrix is:

$$R\circ S=egin{bmatrix} 0.42 & 0.35 \ 0.54 & 0.45 \end{bmatrix}$$

Applications of Fuzzy Relation Composition

- Decision Support Systems: Helps in modeling multi-stage decision processes.
- Fuzzy Control Systems: Used in fuzzy logic controllers for process control.
- Pattern Recognition: Useful for classification and clustering problems.
- Medical Diagnosis: Aids in reasoning about symptoms and diseases.