

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE – 641035

DEPARTMENT OF MECHATRONICS ENGINEERING

In fuzzy logic, operations like intersection (AND) and union (OR) must handle degrees of membership rather than binary values. **T-norms** (triangular norms) and **T-conorms** (triangular conorms) are mathematical functions that generalize these operations while preserving essential properties.

- T-norm (Triangular Norm) → Generalized intersection (AND)
- T-conorm (Triangular Conorm) → Generalized union (OR)

These functions play a critical role in fuzzy set theory, fuzzy inference, and multi-criteria decisionmaking.

2. T-Norm (Triangular Norm)

A **T-norm** is a function $T: [0,1] \times [0,1] \rightarrow [0,1]$ that represents fuzzy intersection (logical AND). It satisfies the following properties:

2.1 Properties of T-Norm

- 1. Commutativity: T(a,b)=T(b,a)
- 2. Associativity: T(a, T(b, c)) = T(T(a, b), c)
- 3. Monotonicity: If $a \leq c$ and $b \leq d$, then $T(a,b) \leq T(c,d)$
- 4. Boundary Condition: T(a,1) = a and T(a,0) = 0

2.2 Common T-Norms

Different T-norms are used based on the required behavior:

T-Norm Type	Definition	Interpretation
Minimum (Gödel T-norm)	$T(a,b) = \min(a,b)$	Most commonly used; standard fuzzy AND
Product T-norm	T(a,b)=a imes b	Allows smooth transitions
Łukasiewicz T-norm	$T(a,b)=\max(0,a+b-1)$	Used in fuzzy logic with strong negation
Drastic T-norm	$T(a,b) = egin{cases} b, & ext{if } a = 1 \ a, & ext{if } b = 1 \ 0, & ext{otherwise} \end{cases}$	Extreme case, only 1 survives

2.3 Example

If we take two fuzzy values A=0.7 and B=0.5:

- Minimum T-norm: $T(0.7, 0.5) = \min(0.7, 0.5) = 0.5$
- Product T-norm: $T(0.7, 0.5) = 0.7 \times 0.5 = 0.35$
- Łukasiewicz T-norm: $T(0.7, 0.5) = \max(0, 0.7 + 0.5 1) = 0.2$

3. T-Conorm (Triangular Conorm)

A T-conorm (also called an S-norm) is a function $S:[0,1] \times [0,1] \rightarrow [0,1]$ that represents fuzzy union (logical OR).

3.1 Properties of T-Conorm

- 1. Commutativity: S(a,b) = S(b,a)
- 2. Associativity: S(a,S(b,c))=S(S(a,b),c)
- 3. Monotonicity: If $a \leq c$ and $b \leq d$, then $S(a,b) \leq S(c,d)$
- 4. Boundary Condition: S(a, 0) = a and S(a, 1) = 1

3.2 Common T-Conorms

Different T-conorms provide different interpretations of fuzzy unions:

T-Conorm Type	Definition	Interpretation
Maximum (Gödel S-norm)	$S(a,b)=\max(a,b)$	Standard fuzzy OR
Probabilistic Sum	S(a,b)=a+b-a imes b	Used in probability-based fuzzy logic
Łukasiewicz S-norm	$S(a,b)=\min(1,a+b)$	Ensures boundedness
Drastic S-norm	$S(a,b) = egin{cases} b, & ext{if}\ a=0\ a, & ext{if}\ b=0\ 1, & ext{otherwise} \end{cases}$	Extreme case, always 1 unless both are 0

3.3 Example

For A = 0.7 and B = 0.5:

- Maximum T-conorm: $S(0.7, 0.5) = \max(0.7, 0.5) = 0.7$
- Probabilistic Sum: S(0.7, 0.5) = 0.7 + 0.5 (0.7 imes 0.5) = 0.85
- Łukasiewicz T-conorm: $S(0.7,0.5)=\min(1,0.7+0.5)=1$

Applications of T-Norms and T-Conorms

- **Fuzzy Logic Systems**: Used in rule evaluation (AND \rightarrow T-norm, OR \rightarrow T-conorm).
- Fuzzy Control: Determines the fuzzy outputs in controllers.
- Decision Making: Helps aggregate different criteria in multi-attribute decision-making.
- Image Processing: Used in edge detection, filtering, and segmentation.