

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE – 641035

DEPARTMENT OF MECHATRONICS ENGINEERING

In Artificial Intelligence (AI), especially in domains like machine learning, computer vision, and audio analysis, the integrity of data is critical. Two common challenges are:

- Noise: Unwanted disturbances or random errors in data.
- Aliasing: Artifacts due to improper sampling of data.

Both can significantly affect the accuracy, robustness, and generalization of AI models.

2. Noise in AI

Definition:

In AI, **noise** refers to **irrelevant**, **inaccurate**, **or random data** that does not represent the underlying pattern the model is trying to learn.

Types of Noise in AI:

Туре	Description	Examples
Label Noise	Incorrect or inconsistent labels	Mislabelled images in datasets
Input Noise	Distortions in features	Blurred images, noisy audio
Sensor Noise	Errors in hardware data capture	Temperature sensor drift
Adversarial Noise	Intentional perturbations	Adversarial attacks on neural networks

Effects of Noise in AI:

- Decreased model accuracy and confidence.
- Overfitting to noisy patterns.
- Reduced generalization to unseen data.
- Difficulty in model convergence during training.

Handling Noise in AI:

1. Data Cleaning: Detecting and removing outliers or mislabeled data.

- 2. Data Augmentation: Introduce controlled noise to improve robustness.
- 3. **Regularization**: Techniques like L1/L2, dropout to reduce overfitting to noisy patterns.
- 4. Robust Models: Use noise-tolerant models like ensemble methods.
- 5. Denoising Autoencoders: Neural networks trained to remove noise from inputs.

3. Aliasing in AI

Definition:

Aliasing in AI occurs when continuous or high-resolution data is sampled or discretized at too low a resolution, causing misrepresentation of patterns.

Where Aliasing Occurs in AI:

1. Computer Vision:

- Aliasing causes moiré patterns, jagged edges, or distorted textures.
- Happens when images are downsampled without proper filtering.

2. Audio Processing:

- Aliasing introduces **false frequencies** when audio is undersampled.
- Affects speech recognition and sound classification models.

3. Time-Series Analysis:

• In financial or sensor data, low sampling rates cause trend misinterpretation.

4. Synthetic Data Generation:

• Poorly sampled synthetic datasets can contain aliasing artifacts that mislead AI models.

Technique	Description
Nyquist Sampling Rule	Sample at $\geq 2x$ the max frequency in data
Anti-Aliasing Filters	Apply low-pass filters before downsampling
Data Resampling	Ensure uniform and adequate sampling in time-series

Preventing Aliasing in AI:

4. Combined Impact in AI Workflows

Stage	Noise Impact	Aliasing Impact
Data Collection	Sensor errors	Poor temporal or spatial resolution
Preprocessing	Misleading feature values	Artifacts in images/sounds
Model Training	Overfitting, poor convergence	Incorrect pattern learning
Inference	Unreliable predictions	Misinterpretation of inputs

5. Real-World Examples

a. Self-Driving Cars

- Noise: Camera blur in foggy conditions.
- Aliasing: Road signs not recognized due to poor image scaling.

b. Medical AI (e.g., Radiology)

- Noise: Low-light or low-dose X-ray noise.
- Aliasing: Misinterpretation of structures in low-resolution scans.

c. Speech Recognition

- Noise: Background talking or wind.
- Aliasing: Undersampled audio causes incorrect phoneme detection.