

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE – 641035

DEPARTMENT OF MECHATRONICS ENGINEERING

Autonomous map building refers to the robot's ability to construct a map of an unknown environment without human intervention. It is a crucial aspect of autonomous navigation and is often tied to localization—knowing where the robot is while building the map.

The Problem of Simultaneous Localization and Mapping (SLAM)

- The robot must:
 - **Build a map** of the environment.
 - **Localize itself** within that map.
- This leads to the **SLAM problem**:
 - The map depends on the pose estimates.
 - The pose estimates depend on the map.

Why Autonomous Map Building?

- Robots are often deployed in **unknown environments**.
- Manual map creation is:
 - Time-consuming.
 - Not scalable.
 - Inflexible in dynamic environments.

Components of Autonomous Map Building

a. Perception

- Uses sensors like:
 - o LiDAR
 - RGB/Depth cameras
 - Sonar

• IMUs (Inertial Measurement Units)

b. Localization

- Robot estimates its current pose using:
 - Odometry (motion model)
 - Sensor data (sensor model)

c. Mapping

- Constructs a representation of the environment:
 - Occupancy grid maps
 - Landmark-based maps
 - 3D maps (e.g., point clouds)

d. Data Association

• Matching current sensor observations to previously observed parts of the map (e.g., recognizing previously seen features).

SLAM Techniques

a. EKF-SLAM (Extended Kalman Filter)

- State vector includes both robot pose and landmark positions.
- Maintains uncertainty using a covariance matrix.

b. FastSLAM

- Uses a particle filter for robot pose.
- Each particle maintains its own map.
- Scales better for large environments.

c. Graph-Based SLAM

- Represents poses and constraints as nodes and edges in a graph.
- Solves an optimization problem to find the most consistent map.

Loop Closure

• Detecting when the robot has returned to a previously visited location.

- Crucial to correct drift and improve map accuracy.
- Performed using:
 - Feature matching (e.g., visual features)
 - Scan matching (e.g., LiDAR scans)

Online vs Offline Mapping

Online mapping: Real-time map construction while navigating

Online mapping refers to the **real-time** process of building a map **as the robot navigates through the environment**. This approach is essential for robots that need to **make decisions on the fly**, such as avoiding obstacles, planning paths, or adjusting their route.

Characteristics:

- Mapping and localization happen simultaneously (part of SLAM).
- The robot **actively uses** the map as it is being created.
- Map data is constantly updated based on **incoming sensor data** and motion inputs.
- Requires efficient algorithms and real-time processing capabilities.

Advantages:

- Enables autonomous exploration in unknown environments.
- Useful in dynamic or unstructured environments where pre-made maps don't exist.
- Immediate feedback: the robot adapts in real time (e.g., re-routes if it detects an obstacle).

Challenges:

- Needs to balance accuracy and speed (real-time constraints).
- High computational load, especially with large or complex environments.
- Can suffer from **drift** over time if loop closures aren't detected.

Examples:

- A warehouse robot dynamically mapping shelves and walkways as it delivers packages.
- A search-and-rescue drone navigating and mapping a collapsed building during a mission.

Common Tools:

- GMapping, Cartographer, RTAB-Map (ROS packages)
- Real-time scan matching and SLAM frameworks

Offline mapping: Post-processing sensor data to build a map

Offline mapping involves **collecting sensor data** (e.g., LiDAR scans, images, odometry) during robot operation and then **processing this data later**—not during real-time movement—to construct a detailed map.

Characteristics:

- The robot does **not need** to use the map during data collection.
- Mapping is performed **after** navigation, often on more powerful computers.
- Allows use of more accurate and computationally heavy algorithms (e.g., global optimization).

Advantages:

- High map accuracy due to access to the full dataset and time for optimization.
- Easier to correct errors using complete knowledge of the environment.
- No need for high computing power on the robot during data collection.

Challenges:

- Not suitable for real-time navigation or decision-making.
- Requires accurate data logging and synchronization between sensors.
- Can be **inflexible** in dynamic or changing environments.

Examples:

- A robot vacuum collects data throughout a house and then uploads it for map construction.
- A drone flies over a construction site, then processes all visual and depth data later to generate a 3D site map.

Common Tools:

- Offline SLAM frameworks, often used with visual odometry.
- Point cloud stitching, map optimization algorithms (e.g., pose graph optimization).
- ROS bags for sensor data recording and playback.

Challenges of Autonomous map building

- Sensor noise and drift in odometry.
- **Data association errors** (wrongly matching features).
- Computational complexity in large environments.
- **Dynamic environments** (moving objects can corrupt maps).

Tools and Frameworks for Autonomous map building

- ROS (Robot Operating System) with packages like:
 - GMapping
 - Cartographer (by Google)
 - RTAB-Map (Real-Time Appearance-Based Mapping)
- SLAM Toolboxes: OpenSLAM, ORB-SLAM, Hector SLAM, etc.

Applications of Autonomous map building

- Indoor navigation (service robots, delivery robots).
- Autonomous vehicles (urban mapping).
- Search and rescue robots.
- Agricultural and warehouse robots.