

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE – 641035

DEPARTMENT OF MECHATRONICS ENGINEERING

Robot Expert Systems are a type of Artificial Intelligence (AI) system that provides robots with **domain-specific expertise** and **reasoning capabilities**. These systems enable robots to **simulate human decision-making**, allowing them to solve problems, make choices, and act intelligently based on a predefined set of **rules and knowledge**.

Robot expert systems are widely used in various robotic domains like:

- Industrial automation
- Healthcare robots
- Mobile robots
- Maintenance and diagnostics
- Agriculture and military robotics

What is a Robot Expert System?

A robot expert system is an AI software integrated into a robotic system that:

- Uses a **knowledge base** and **rules** to make decisions.
- Applies logical reasoning (inference).
- Helps robots perform complex tasks without human intervention.

Component	Function
Knowledge Base	Stores facts, heuristics, and domain rules (e.g., "If obstacle ahead, stop").
Inference Engine	Applies logical rules to the knowledge to draw conclusions or make decisions.
Working Memory	Stores current facts/data (e.g., sensor inputs, environmental conditions).
User/Robot	Communicates between the system and robot actuators/sensors.

Components of a Robot Expert System

Interface	
Explanation System	(Optional) Explains how the decision was made, useful in debugging and trust-
	building.

How Robot Expert Systems Work

Step-by-Step Process:

- 1. Sensor Input: Robot gathers data from sensors (e.g., camera, LiDAR, temperature).
- 2. Fact Creation: Input data is translated into logical facts (e.g., "Obstacle detected at 1.5 meters").
- 3. Rule Matching: Inference engine checks these facts against the rules in the knowledge base.
- 4. **Decision Making**: If rules are satisfied, the engine executes corresponding actions (e.g., "Stop movement and turn right").
- 5. Action Execution: Robot performs the decided task using its actuators.

Types of Inference	Methods in	Robotics
---------------------------	------------	-----------------

Method	Description	Use Case
Forward	Starts from known facts and applies rules to	Reactive robot control (e.g., obstacle
Chaining	infer conclusions.	avoidance).
Backward	Starts with a goal and works backward to see	Goal-directed tasks (e.g., "How to
Chaining	if known facts support the goal.	reach a charging station?").

Applications of Expert Systems in Robots

a. Industrial Robots

- Task scheduling, quality inspection, maintenance decisions.
- Example: Adjusting welding temperature based on material type.

b. Mobile Robots

• Navigation, path planning, obstacle avoidance using expert rules.

• Example: "If battery < 20% and charging station nearby, go to charge."

c. Medical Robots

- Patient monitoring, treatment suggestion, emergency detection.
- Example: "If heart rate exceeds threshold + movement restricted, alert caregiver."

d. Agricultural Robots

- Crop monitoring, irrigation decisions, disease detection.
- Example: "If soil moisture < threshold and forecast is dry, start watering."

Advantages of Robot Expert Systems

- **Explainable**: Decisions are traceable and easy to audit.
- **Reliable**: Performs well in structured, rule-based environments.
- **Domain Expertise**: Captures human expert knowledge for specialized tasks.
- **Deterministic**: Behavior is predictable, important in safety-critical applications.

Limitations

- Lack of learning: Cannot adapt unless rules are manually updated.
- Knowledge engineering bottleneck: Hard to encode all expert knowledge.
- Not ideal for perception tasks: Less effective in uncertain, noisy environments compared to AI/ML.
- Scalability issues: Too many rules can slow down reasoning.

Modern Trends: Hybrid Expert Systems

To overcome limitations, expert systems in robotics are often combined with other AI techniques:

- Expert system + machine learning:
 - ML handles perception (vision, speech).
 - Expert system handles logic and safety rules.

• **Example**: Self-driving cars use neural networks to detect objects but rule-based systems to follow traffic laws.

Real-World Examples

a. NASA's Rovers

• Use expert systems to plan tasks and troubleshoot faults without human help.

b. ASIMO (Honda)

• Applies rule-based logic for balance, interaction, and walking in structured environments.

c. ROS-Based Expert Systems

• Robots using ROS integrate rule engines like CLIPS or Prolog for behavior control.