

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE – 641035

DEPARTMENT OF MECHATRONICS ENGINEERING

The integration of expert systems into robotics has significantly enhanced the ability of robots to make autonomous, intelligent decisions in real-time environments. **Robot expert systems** combine the sensory and motor capabilities of robotics with the logical reasoning and knowledge-based inference of artificial intelligence (AI). Their role goes beyond simple task execution — they act as decision-makers, planners, and problem solvers, mimicking human expertise in a structured and consistent way.

Robot expert systems are critical in enabling robots to operate effectively in complex and uncertain environments across industries like healthcare, manufacturing, defense, agriculture, and space exploration.

Decision-Making

One of the primary roles of a robot expert system is **intelligent decision-making** based on logical rules, expert knowledge, and current situational data.

- **Example**: In a warehouse robot, if a high-priority package is detected near a low battery zone, the system decides whether to complete the task or charge first.
- Uses inference engines to process facts and rules (e.g., IF-THEN rules).
- Enables context-aware decisions rather than hardcoded reactions.

Planning and Goal Management

Robot expert systems play a critical role in **planning** — formulating a sequence of actions to achieve specified goals while respecting environmental and system constraints.

- **Path planning**: Navigate through dynamic environments.
- Task scheduling: Determine the order of operations based on priorities and dependencies.
- Adaptive planning: Re-plan when obstacles or failures occur.

Example: A hospital service robot deciding the best order to deliver medications based on urgency and location.

Problem Solving and Diagnosis

Expert systems assist in **diagnosing faults** in robot hardware, sensors, or operational procedures.

- Identify internal system errors (e.g., motor overheating).
- Analyze external environment issues (e.g., unrecognized object blocking the path).
- Suggest corrective actions or alternate strategies.

Example: A robotic arm diagnosing a failed gripper and switching to an alternate tool.

Perception Interpretation

Robot expert systems interpret raw sensor data to derive meaningful conclusions.

- Integrate data from multiple sensors (sensor fusion).
- Classify objects, detect events, and infer situations.
- Translate perceptual inputs into symbolic representations.

Example: A robot sees steam and infers a hot surface nearby, adjusting its path.

Learning and Adaptation (in Hybrid Systems)

Although traditional expert systems are rule-based, modern implementations may include **learning mechanisms** such as machine learning or neural-symbolic systems.

- Learn from past decisions or operator feedback.
- Adjust thresholds, strategies, or rules over time.
- Continuously update the knowledge base.

Example: A farming robot learns optimal soil moisture levels by combining expert rules with sensor trends.

Human-Robot Interaction Support

Expert systems often act as intermediaries for meaningful and intelligible communication between

robots and humans.

- Provide explanations for actions (explainable AI).
- Accept high-level commands and convert them into plans.
- Help in supervised autonomy or shared control systems.

Example: A search-and-rescue robot explains its search strategy to human commanders.

Safety Monitoring and Risk Management

Robot expert systems play a vital role in ensuring safety in both autonomous and collaborative settings.

- Enforce safety rules (e.g., stop if human enters danger zone).
- Monitor sensor anomalies, actuator failures, or environmental threats.
- Initiate emergency procedures when thresholds are breached.

Example: In nuclear plant maintenance, robots use expert systems to avoid radiation-prone zones.

Task Execution and Coordination

Robot expert systems guide task performance by coordinating low-level controls and high-level goals.

- Translate abstract tasks into motor commands.
- Coordinate multiple components (arms, wheels, cameras).
- Synchronize multi-robot teams in cooperative settings.

Example: Drones in a fleet divide mapping regions based on terrain and battery levels.