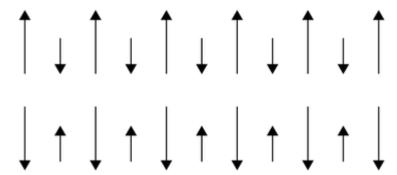


ANTIFERROMAGNETIC MATERIALS

- The spin alignment is in antiparallel manner.
- Susceptibility is small and positive and it depends on temperature.
- Initially susceptibility increases with increase in temperature and beyond Neel temperature the susceptibility decreases with temperature.
- The antiparallel alignment exists in material below a critical temperature known as Neel temperature
- At Neel temperature susceptibility is maximum. Susceptibility, $\chi = M/M + \theta$
- Examples: Mn, Cr, FeO, MnO, Cr2O3 and salts of transition elements


Antiferromagnetic ordering

FERRI MAGNETIC MATERIALS

- The spin alignment is antiparallel but have different magnitude.
- So they possess net magnetic moment which produce a large magnetization even for a small applied external field.

- It is also called ferrites.
- Susceptibility is very large and positive.
- Examples: ferrous ferrite, nickel ferrite

Comparison:

S. A	Properties	Diamagnetic	Paramagnetic	Ferromagnetic
1	Definition	It is a material in which there is no permanent magnetic moment.	It has permanent magnetic moment.	It has enormous (more) permanent magnetic moment.
2	Spin or magnetic moment or dipole alignment.	No spin alignment.	Random alignment	Parallel and orderly alignment.
3	Behavior	Repulsion of magnetic lines of force from the centre of the material.	Attraction of magnetic lines towards the centre.	Heavy attraction of lines of force towards the centre.
4	Magnetized direction	Opposite to the External magnetic field.	Same direction as the External magnetic field.	Same direction as the External magnetic field.
5	Permeability	It is very less	It is high	It is very high
6	Relativity permeability	$\mu_r < 1$	$\mu_r > 1$	$\mu_r >> 1$
7	Susceptibility	Negative	Low positive	High positive
8	transition	material is Superconductor.		When temperature of the material is greater than it Curie temperature it is converted into Paramagnet.