

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-35

DEPARTMENT OF BIOMEDICAL ENGINEERING

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS

UNIT II- Pressure, Displacement and Temperature II Year/ IV Sem

Dr. K. Manoharan, ASP / BME / SNSCT

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT

BIOMEDICAL TRANSDUCERS AND SENSORS

- ✓ Resistive Strain Gauges and Bridge circuit
- ✓ Piezoelectric Transducers
- ✓ Potentiometric Transducers
- ✓ Capacitive, Inductive
- ✓ LVDT Transducers Principle
- ✓ Equivalent Circuit & Linearity Issues
- ✓ Thermo Resistive Resistance Temperature Detectors (RTDS)
- ✓ Thermistor Thermo Electric Thermocouple
- ✓ PN Junction Diode

Introduction to LVDT

- A Linear Variable Differential Transformer (LVDT) is an electromechanical transducer that converts linear displacement (position) into an electrical signal.
- It is widely used in industrial automation, aerospace, robotics, and instrumentation due to its high precision and reliability.

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT

Construction of LVDT

Primary Winding (PP):

- A coil wound around the central part of the transformer.
- Excited by an AC voltage (typically 1 kHz to 10 kHz).

Secondary Windings (S1 and S2):

- Two identical coils symmetrically wound on either side of the primary coil.
- Connected in series opposition (differential mode).

Movable Core:

- A ferromagnetic core (usually made of nickel-iron alloy) placed inside the cylindrical coil structure.
- Moves along the axis of the coils in response to displacement.

Non-Magnetic Housing:

 Protects the windings and core while allowing free movement of the core.

Ratiometric Wiring

$$D = M \frac{V_A - V_B}{V_A + V_B}$$

Working Principle of LVDT

The LVDT operates based on mutual inductance and the principle of differential transformer action.

Step-by-Step Operation:

- 1. Excitation:
 - An **AC voltage** is applied to the primary coil (PP), generating an alternating magnetic field.
- 2. Induced EMF in Secondary Coils:
 - The alternating magnetic field induces **electromotive forces (EMFs)** in both secondary windings (S1 and S2).
 - The magnitude of induced voltages depends on the position of the core.

Three Possible Conditions:

- Neutral Position (Null Position):
 - The core is at the centre.
 - Equal EMFs are induced in S1 and S2, producing equal voltages.
 - Since S1 and S2 are connected in opposite phases, their output cancels out, giving zero output voltage.

• Core Displaced Towards S1:

- The EMF in S1 increases while in S2 it decreases.
- The resultant voltage (Vout=VS1–VS2) is **positive**.
- Indicates displacement in the **positive direction**.
- Core Displaced Towards S2:
 - The EMF in S2S_2 increases while in S1 it decreases.
 - The resultant voltage (Vout=VS2–VS1) is **negative**.
 - Indicates displacement in the **negative direction**.

Advantages of LVDT

- 1. High Accuracy No mechanical friction, leading to precise measurement.
- 2. Infinite Resolution Theoretically, no limit to the resolution.
- 3. High Sensitivity Can detect minute displacements.
- 4. Frictionless Operation No wear and tear as there is no direct contact.
- 5. Wide Measurement Range Can measure both small and large displacements.
- 6. Low Power Consumption Works efficiently with minimal power.
- 7. Linearity Highly linear over a wide range of displacement.
- **8.** Temperature Stability Less affected by temperature variations. **Disadvantages of LVDT**
- **1.Sensitive to Electromagnetic Interference (EMI)** Requires shielding.
- **2.High Initial Cost** More expensive than simpler sensors.
- **3.Size Limitations** Large physical size compared to some other displacement sensors.
- **4.Limited Measurement Range** Large displacements require longer LVDTs.
- 5.Excitation Source Required Needs an AC supply.

Applications of LVDT

Industrial & Automation

Position control in CNC machines. Robotic arm displacement measurement. Valve position monitoring in process industries.

Aerospace & Defense

Aircraft control surface displacement measurement. Missile guidance system position sensing.

Medical Applications

Precise motion control in prosthetics. Medical imaging equipment motion sensing.

Structural Monitoring

Bridge expansion monitoring. Railway track displacement measurement.

Automotive Industry

Suspension system testing. Engine throttle position sensing.

Characteristics of LVDT

- **1. Range**: Typically ranges from ±0.25 mm to ±500 mm.
- 2. Excitation Frequency: Usually between 1 kHz to 10 kHz.
- **3.** Linearity: $\pm 0.05\%$ to $\pm 0.5\%$ of full scale.
- 4. Temperature Coefficient: Small drift with temperature changes.

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT