

# SNS COLLEGE OF TECHNOLOGY



( An Autonomous Institution) Coimbatore-35

## DEPARTMENT OF BIOMEDICAL ENGINEERING

## **23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS**

# UNIT II- Pressure, Displacement and Temperature II Year/ IV Sem

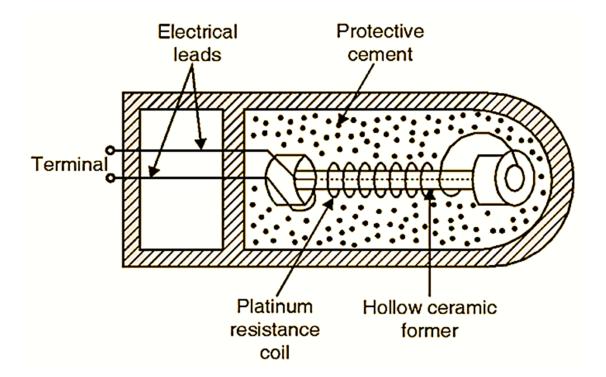
Dr. K. Manoharan, ASP / BME / SNSCT



## **BIOMEDICAL TRANSDUCERS AND SENSORS**

- ✓ Resistive Strain Gauges and Bridge circuit
- ✓ Piezoelectric Transducers
- ✓ Potentiometric Transducers
- ✓ Capacitive, Inductive
- ✓ LVDT Transducers Principle
- ✓ Equivalent Circuit & Linearity Issues
- ✓ Thermo Resistive Resistance Temperature Detectors (RTDS)
- ✓ Thermistor Thermo Electric Thermocouple
- ✓ PN Junction Diode






Thermo Resistive - Resistance Temperature Detectors (RTDS)

Thermo-resistive sensors operate based on the principle that a material's electrical **resistance changes with temperature**.

The two main types of thermoresistive sensors are:

- 1. Resistance Temperature Detectors (RTDs)
- 2.Thermistors





Thermo Resistive - Resistance Temperature Detectors (RTDS)

## **Resistance Temperature Detectors (RTDs)**

RTDs are temperature sensors that use a metal resistor whose resistance increases **linearly** with temperature.

## **1.1. Working Principle**

RTDs work based on the formula:  $RT=RO(1+\alpha T)$ 

Where:

- RT = Resistance at temperature TTT
- R0 = Resistance at 0°C
- $\alpha$  = Temperature coefficient of resistance (TCR), a constant for a given metal
- T = Temperature in °C

As temperature increases, the metal's resistance increases proportionally.





• RTD Materials & Characteristics

| Material                 | Typical Resistance           | Temperature Range (°C) | TCR (per °C) |
|--------------------------|------------------------------|------------------------|--------------|
| Platinum (Pt100, Pt1000) | 100Ω (Pt100), 1000Ω (Pt1000) | -200 to 850°C          | 0.00385      |
| Copper                   | 10Ω – 100Ω                   | -200 to 150°C          | 0.00427      |
| Nickel                   | 100Ω                         | -60 to 180°C           | 0.00672      |

Platinum RTDs (Pt100, Pt1000) are the most common due to high accuracy and stability.

Nickel and Copper RTDs are used in lower-precision applications.





## **Types of RTDs**

#### 1. Wire-Wound RTD

- 1. A fine metal wire (usually platinum) wound around a ceramic or glass core.
- 2. Highly accurate but breakable.

## 2.Thin-Film RTD

- 1. A thin layer of platinum deposited onto a ceramic substrate.
- 2. Compact, durable, and cost-effective, but slightly less accurate than wire-wound.

## **3.Coiled-Element RTD**

- 1. A coiled platinum wire is embedded in a ceramic or glass tube.
- 2. Best balance of accuracy and mechanical strength.





#### **RTD Wiring Configurations**

• RTDs require external circuitry to measure resistance and convert it to temperature. Common wiring types include:

| Configuration | Description                                 | Advantage               |
|---------------|---------------------------------------------|-------------------------|
| 2-Wire RTD    | Simplest, but affected by lead resistance   | Least accurate          |
| 3-Wire RTD    | Compensates for lead resistance             | Most common in industry |
| 4-Wire RTD    | Eliminates lead resistance effects entirely | Best accuracy           |





#### ✓ Advantages

- High accuracy and stability
- Wide operating temperature range
- Excellent repeatability

### X Disadvantages

- More expensive than thermistors
- Requires external excitation current
- Slower response time than thermistors

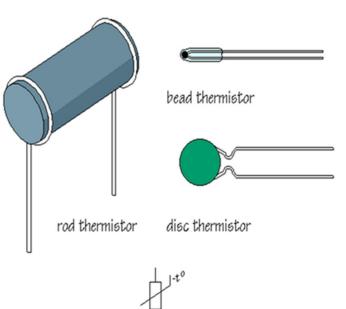






#### Thermistors

Thermistors are temperature-sensitive resistors made from ceramic materials that exhibit a **non-linear** change in resistance with temperature.


#### **Types of Thermistors**

#### **1. Negative Temperature Coefficient (NTC) Thermistors**

- 1. Resistance **decreases** as temperature **increases**.
- 2. Commonly used for **temperature sensing applications** (medical thermometers, HVAC systems).

#### 2. Positive Temperature Coefficient (PTC) Thermistors

- 1. Resistance increases as temperature increases.
- 2. Used in overcurrent protection circuits and self-regulating heating elements.



thermistor circuit symbol





#### **Thermistor Working Principle**

• Thermistors follow the **Steinhart-Hart Equation**, which describes resistance as a function of temperature:

$$\frac{1}{T} = A + B\ln(R) + C(\ln(R))^3$$

- Where:
  - T = Temperature in Kelvin
  - R = Resistance of the thermistor
  - A,B,C = Material-specific constants
- Unlike RTDs, thermistors exhibit a **highly nonlinear** resistance change, making them extremely sensitive but requiring complex calibration.





• Thermistor Characteristics

| Parameter         | Thermistors (NTC/PTC)           | RTDs                        |
|-------------------|---------------------------------|-----------------------------|
| Temperature Range | -50 to 150°C (some up to 300°C) | -200 to 850°C               |
| Accuracy          | ±0.1 to ±1°C                    | ±0.01 to ±0.1°C             |
| Response Time     | Fast (milliseconds to seconds)  | Slower (seconds to minutes) |
| Linearity         | Non-linear                      | Linear                      |
| Cost              | Low                             | High                        |

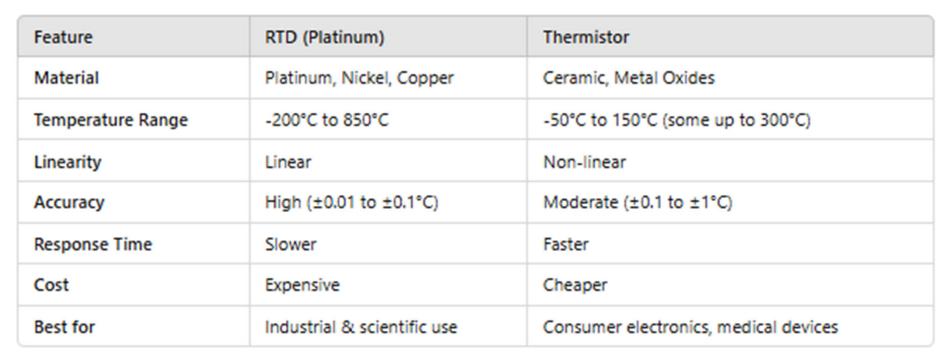




#### **Thermistor Applications**

- Medical devices (e.g., digital thermometers)
- HVAC systems for temperature control
- Battery temperature monitoring
- Automotive coolant temperature sensors Thermistor Advantages & Disadvantages

#### ✓ Advantages


- Small and inexpensive
- High sensitivity to temperature changes
- Fast response time

#### × Disadvantages

- Non-linear response
- Limited temperature range
- Requires calibration



## Comparison: RTDs vs. Thermistors

