Visible Surface
Detection



Visible Surface Detection

* Visible surface detection or hidden surface
removal.

» Realistic scenes: closer objects occludes the
others.

« Classification:

- Object space methods
- Image space methods



Object Space Methods

Algorithms to determine which parts of the shapes
are to be rendered in 3D coordinates.

Methods based on comparison of objects for their 3D
positions and dimensions with respect to a viewing
position.

For N objects, may require N*N comparision
operations.

Efficient for small number of objects but difficult to
implement.

Depth sorting, area subdivision methods.



Image Space Methods

Based on the pixels to be drawn on 2D. Try to
determine which object should contribute to that
pixel.

Running time complexity is the number of pixels
times number of objects.

Space complexity is two times the number of pixels:

- One array of pixels for the frame buffer
- One array of pixels for the depth buffer
Coherence properties of surfaces can be used.

Depth-buffer and ray casting methods.



Depth Cueing

* Hidden surfaces are not removed but displayed with
different effects such as intensity, color, or shadow
for giving hint for third dimension of the object.

* Simplest solution: use different colors-intensities
based on the dimensions of the shapes.




Back-Face Detection

» Back-face detection of 3D polygon surface is
easy

« Recall the polygon surface equation:

Ax+By+Cz+D <0

* We need to also consider the viewing
direction when determining whether a
surface is back-face or front-face.

 The normal of the surface is given by:

N =(4,B,C)



Back-Face Detection

« A polygon surface is a back face if:

V. N>0

view

« However, remember that after application of
the viewing transformation we are looking
down the negative z-axis. Therefore a
polygon is a back face if:

(0,0,~1)N>0
orif C<0



Back-Face Detection

N = (A, B, C)

« We will also be unable to see surfaces with
C=0. Therefore, we can identify a polygon
surface as a back-face if:

C<0



Back-Face Detection

* Back-face detection can identify all the
hidden surfaces in a scene that contain non-
overlapping convex polyhedra.

* But we have to apply more tests that contain

overlapping objects along the line of sight to
determine which objects obscure which

objects.



Depth-Buffer Method

* Also known as z-buffer method.

« It is an image space approach

- Each surface is processed separately one pixel
position at a time across the surface

- The depth values for a pixel are compared
and the closest (smallest z) surface
determines the color to be displayed in the
frame buffer.

- Applied very efficiently on polygon surfaces
- Surfaces are processed in any order



Depth-Buffer Method

View Plane




Depth-Buffer Method

« Two buffers are used
- Frame Buffer
- Depth Buffer

« The z-coordinates (depth values) are usually
normalized to the range [0,1]



Depth-Buffer Algorithm

* Initialize the depth buffer and frame buffer so that
for all buffer positions (x,y),

depthBuff (x,y) = 1.0, frameBuff (x,y) =bgColor
* Process each polygon in a scene, one at a time

- For each projected (x,y) pixel position of a polygon,
calculate the depth z.

- If z < depthBuff (x,y), compute the surface color at
that position and set

depthBuff (x,y) = z, frameBuff (x,y) = surfCol (x,y)



Calculating depth values efficiently

« We know the depth values at the vertices.

How can we calculate the depth at any other
point on the surface of the polygon.

* Using the polygon surface equation:
—Ax—-By-D
i
&




Calculating depth values efficiently

* For any scan line adjacent horizontal x
positions or vertical y positions differ by 1
unit.

* The depth value of the next position (x+1,y)
on the scan line can be obtained using

, —A(x+1)-By—-D

Z



Calculating depth values efficiently

* For adjacent scan-lines we can compute the
X value using the slope of the projected line
and the previous x value.

7 1
X =x—-—
m
; A/m+ B
— L =ZT

&



Depth-Buffer Method

» Is able to handle cases such as

' B |

¥l 2

View from the
Right-side

These polygons are both
in front of and behind one
another,




Z-Buffer and Transparency

We may want to render transparent surfaces (alpha #1)
with a z-buffer

However, we must render in back to front order

Otherwise, we would have to store at least the first
opaque polygon behind transparent one

Partiall Front
" 3rd | 1st or 2nd
transparent
Opaque nd . 3rd: Need depth
e i of st and 2nd
Opaque - Ist . ___—— Mustrecall this

Istor 2nd color and depth

OK. No Problem Problematic Ordering



A-Buffer Method

« Extends the depth-buffer algorithm so that
each position in the buffer can reference a
linked list of surfaces.

« More memory is required

« However, we can correctly compose different
surface colors and handle transparent
surfaces.



A-Buffer Method

« Each position in the A-buffer has two fields:

- a depth field

- surface data field which can be either surface
data or a pointer to a linked list of surfaces
that contribute to that pixel position

RGB and

depth =0

other info

(i)

depth <0

Surfl

info

Surf2
info

(b)




Scan Line Method

« Extension of the scan-line algorithm for filling
polygon interiors

O For all polygons intersecting each scan line

2 Processed from left to right

4 Depth calculations for each overlapping
surface

4 The intensity of the nearest position is entered
into the refresh buffer



Tables for The Various Surfaces

4 Edge table
* Coordinate endpoints for each line
* Slope of each line
* Pointers into the polygon table
Identify the surfaces bounded by each line
4 Polygon table
* Coefficients of the plane equation for each surface
* Intensity information for the surfaces
* Pointers into the edge table



Active List & Flag

4 Active list
* Contain only edges across the current scan line
* Sorted in order of increasing x

2 Flag for each surface
* Indicate whether inside or outside of the surface
* At the leftmost boundary of a surface

- The surface flag is turned on
* At the rightmost boundary of a surface

* The surface flag is turned off



