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QUADRIC SURFACES

= Afrequently used class of objects are the quadric surfaces,
which are described with second-degree equations
(quadratics). They include spheres, ellipsoids, tori,
paraboloids, and hyperboloids.

= Quadric surfaces, particularly spheres and ellipsoids, are
common elements of graphics scenes
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Quadric Surfaces
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Figure 10-8

Parametric coordinate
position (r, 6, é) on the
surface of a sphere with
radius r.
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We can also describe the spherical surface in
parametric form, using latitude and longitude
angles

X =rcos¢cosh, -nw/2=d=7n/2
y =rcos¢sing, —nm=0=x
z = rsing



we could write the parametric equations usin
standard spherical coordinates, where angle
is specified as the

colatitude (Fig. 109). Then, @ is defined over the range 0 < &< m, and f1is offen
taken n the range 0< < 2. We could also set up the representation using pa:
ameters u and v defined over the range from 0o 1 by substituting ¢ = mu and
=Im,
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Figure 10-9

Spherical coordinate
parameters (r, 6, ¢), using
colatitude for angle ¢.



= Ellipsoid

" An ellipsoidal surface can be described as an extension of a
spherical surface, where the radii in three mutually
perpendicular directions can have different values(Fig. 10-
10).

= The Cartesian representation for points over the surface of an
ellipsoid centered on the origin is
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Figure 10-10

An ellipsoid with radii r,, r,,
and r, centered on the
coordinate origin.



And a parametric representation for the elipsoi in lerms of the laitude angle ¢
and the longitude angle in Fig. 10§ s

Y=r,008pc0sf  =m/2<g <
y= rymsinﬂ,, ~rsisy (10-10)
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Torus

* Atorus is a doughnut-shaped object, as shown in Fig.
10-11.

" It can be generated by rotating a circle or other conic
about a specified axis.
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Alorus with 3 reular cross section
centered on e coordinate omgin.
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The Cartesian representation for points over the
surface of a torus can be written in the form

[,_ (E]?:GTTT(E)IM (10-11)

where 7 is any given offset value. Parametric representations for a torus are simi-
lar to those for an ellipse, except that angle & extends over 360°. Using latitude
and longitude angles ¢ and 8, we can describe the torus surface as the set of
points that satisfy

1= rir+ cosdlcosh, -rsd=mn
y=rfr+cosdlsind -wslsw (10-12)
2 =r.sing
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=BLOBBY OBJECTS

* Some objects do not maintain a fixed shape, but change
their surface characteristics in certain motions or when in
proximity to other objects.

* Examples in this class of objects include molecular
structures, water droplets and other liquid effects, melting
objects, and muscle shapes in the human body.

* These objects can be described as exhibiting "blobbiness"
and are often simply referred to as blobby objects, since
their shapes show a certain degree of fluidity.
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Figure 10-14 Q:’/—_/D
Molecular bonding, As two

Ay
CO
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molecules move away from (b)

each other, the surface shapes

stretch, snap, and finally ; ;‘g:t;rl: 10-15 —
tract int obby muscle shapes in a

contractntospheres. human arm.

15



= Several models have been developed for representing
blobby objects as distribution

functions over a region of space. One way to do this is to
model objects as combinations of Gaussian density
functions, or "bumps".

A surface function is then defined as

fx,y, )= be ¥i-T=0
[
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where rf = Vxf +yt + 2}, parameter T is some specified threshold, and parame-
£ ters 2 and b are used to adjust the amount of blobbiness of the individual objects.
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Spline Representations
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Figure 10-16

A three-dimensional
Gaussian bump centered at
position 0, with height b and
standard dewviation a.

Figure 10-17

A composite blobby object
formed with four Gaussian
bumps.
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Other methods for generating blobby objects use density functions that fall
off to 0 in a finite interval, rather than exponentially. The “metaball” model de-
scribes composite objects as combinations of quadratic density functions of the

form

(b(1 ~ 3%/d), if0<r<d/3
” fir) = + gm —rdp,  itd3<rsd (1018
LU, r>d

And the “soft object” model uses the function

2 17 & )
fi) = I'Tﬂﬂ”"'% o f0<r=d

[}i ifr>d

(10-19)
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SPLINE REPRESENTATIONS

®= aspline is a flexible strip used to produce a smooth
curve through a designated set of points.

= Several small weights are distributed along the length
of the strip to hold it in position on the drafting table as the
curve is drawn.

* The term spline curve originally referred to a curve
drawn in this manner.
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" |n computer graphics, the term spline curve now refers to
any composite curve formed with polynomial sections
satisfying specified

continuity conditions at the boundary of the pieces.

" A spline surface can be described with two sets of
orthogonal spline curves.

= Splines are used in graphics applications to design curve
and surface shapes, to digitize drawings for computer
storage, and to specify animation paths for the objects or
the camera in a scene

21



Interpolation and Approximation Splines

* We specify a spline cuve by giving a set of coordinate
positions, called control points, which indicates the general
shape of the curve

* These control points are then fitted with piecewise
continuous parametric polynomial functions in one of two
ways.
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22



ian | i

= When polynomial sections are fitted so that the curve
passes through each control point, as in Figure the
resulting curve is said to interpolate the set of control
points.

Figure 10-19

A set of six control puints
interpolated with precewise
continuous polvnomaal
sections
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® On the other hand, when the polynomials are fitted to the
general control-point path without necessarily passing
through any control point, the resulting curve is said to
approximate the set of control points

.w.

Figure 10-20

A set of six control points
approximated with piecewise
continuous polynomaal
sections

ian | i

24



e T I T EHE NI M

" Aspline curve is defined, modified, and manipulated with
operations on the control points.

= |n addition, the curve can be translated, rotated, or scaled
with transformations applied to the control points.

" The convex polygon boundary that encloses a set of control
points is called the convex hull.
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Parametric Continuity Conditions

= To ensure a smooth transition from one section of a piecewise
parametric curve to the next, we can impose various continuity
conditions at the connection points.

* |f each section of a spline is described with a set of parametric
coordinate functions of the form

x=xW), y=ylw), z=2w), W SusK
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Zero-order parametric continuity, described as C1 continuity,
means simply that the curves meet.

That is, the values of x, y, and z evaluated at u, for the first
curve section are equal, respectively, to the values of x, y, and
Z evaluated at u, for the next curve section.

First-order parametric continuity, C1 continuity, means that
the first parametric derivatives (tangent lines) of the
coordinate functions for two successive curve sections are
equal at their joining point.
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= Second-order parametric continuity, or C2 continuity,
means that both the first and second parametric
derivatives of the two curve sections are the same at the
intersection.

* The rates of change of the tangent vectors for

connecting sections are equal at their intersection. Thus, the
tangent line transitions

smoothly from one section of the curve to the next
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® But with first-order continuity, the rates of change of the
tangent vectors for the two sections can be quite different
so that the general shapes of the two adjacent sections can
change abruptly.

Flv Piecewise construction of a
curve by joining two curve

segments using different
L/\ orders of continuity: (a) zero-
- order continuily only,
(b) first-order continuity,
A and (c) second-order
c continuity.
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Geometric Continuity Conditions

* An alternate method for joining two successive curve sections
is to specify conditions for geometric continuity.

* |n this case, we only require parametric derivatives of the two
sections to be proportional to each other at their common
boundary instead of equal to each other.

T N T G
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= Zero-order geometric continuity, described as GO continuity
Is the same as zero-order parametric continuity. That is, the
two curves sections must have the same coordinate
position at the boundary point.

= First-order geometric continuity or G1 continuity, means
that the parametric first derivatives are proportional at the
intersection of two successive sections.
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= Second-order geometric continuity, or G2 continuity means
that both the first and second parametric derivatives of the
two curve sections are proportional at their boundary.

" Under G2 continuity, curvatures of two curve sections will
match at the joining position.

= A curve generated with geometric continuity conditions
is similar to one generated with parametric continuity, but
with slight differences in curve shape.
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E Spline Specifications
= = There are three equivalent methods for specifying a
particular spline representation:

(1)We can state the set of boundary conditions that are
imposed on the spline; or

(2) we can state the matrix that characterizes the spline; or

(3)we can state the set of blending functions (or basis
functions) that determine how specified geometric
constraints on the curve are combined to calculate
positions along

the curve path.

T T \EC
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" suppose we have the following parametric cubic
polynomial representation for the x coordinate along the
path of a spline section:

x) =aw +but+cu+d, 0=sus=]

Boundary conditions for this curve might be set, for example, on the endpoint co-
ordinates x(() and x(1) and on the parametric first derivatives at the endpoints
7(0) and (1). These four boundary conditions are sufficient to determine the
values of the four coefficientsa, b, ¢, and d,

MR T A pirfrr-™=tui s



From the boundary conditions, we can obtain the
matrix that characterizes this spline curve by first
rewriting Eq. 10-21 as the matrix product.

) = [l ul)
£ (10-11)

=U-C

where U is the row matrix of powers of parameter u, and C is the coefficient col-
umn matrix. Using Eq. 10-22, we can write the boundary conditions in matrix
form and solve for the coefficient matrix C as

N e e T

C = mr- M ”'ﬂ'?j:
h{,pj L 35



Where Moy 15 four€lement column matrix contaning he grometrc constrait
Vlues (boundary condinons) o the splin and M, is the 4by-4 matr ta
Iransforms the geometric constraint values fo the polynomial coeffcents and
provides  characterzaton fo th spline curve. Matrx M contan control

pointcoordinate values and other geometric constrents tha have been speciied
Thus, we can substitutethe matrix representahon for C into B, 10-22 o obtan

x(u) = U - P’[ipl:m ‘ Mgmm
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CUBIC SPLINE INTERPOLATION
METHODS

= This class of splines is most often used to set up paths for
object motions or to provide a representation for an existing
object or drawing.

®= cubic splines require less calculations and

memory and they are more stable. Compared to lower-
order polynomials, cubic splines are more flexible for
modeling arbitrary curve shapes.
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Figure 10-26
A piecewise continuous cubic-spline interpolation of n + 1 control

.points.
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= A cubic interpolation fit of these points can be illustrated

® We can describe the parametric cubic polynomial that is to
be fitted between each pair of control points with the
following set of equations:

xlu) = a0 + byt 4 cu +d,
yu =apd +but +outd, O=<us<) (10-26)

2u) = aul + b + cu + d,

T T IS > I
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Hermite Interpolation

® Hermite spline is an interpolating piecewise cubic
polynomial with a specified tangent at each control point.

= Unlike the natural cubic splines, Hermite splines can be
adjusted locally because each curve section is only
dependent on its endpoint constraints.
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* |f P(u) represents a parametric cubic point function for
the curve section between

control points p, and then the boundary conditions that
define this Hermite curve section are

PO) = p,
P(1) = pr.,
P = Dp;
P(1) = Dp;.,

41



= ilh Dp, and Dy, specitying the values for the parametric cerivatives (slope of
= the curve)al control points p, and p,., respectively,

We can wnite the vector equivalent of Eqs. 10-26 for this Hermite-curve sec-
tion as

Po=ar s bt +cutd D=yus] (10-28)

where the r component of P is r(u) = a6 + bu? + ¢ - d,, and similar'y for the
yand z components. The matrix equivalent of kg, 10-281s

P =l win ) -29)

M




and the derivative of the point function can be expressed as

Plu) = 13w 2u10] (4-30

Substituting endpoint values 0 and | for parameter 1 into the previous two equa
tions, we can express the Hermite boundary conditions 10-27 in the matrix form:

3 -

P [0 00 17

P4
S R R o
| Dpyd L3 21 0 LdJ

Jj——
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& Solving this equation for the polynomial coefficients, we have

B A O

0
I
1
1

)
e
= B e e
=
=

=1L B (10-32)

Pi

Piny
=M, -
? Dp,

Dpiyy

where M, the Hermite matrix, is the inverse of the boundary constraint matrix.
Equation 10-29 can thus be written in terms of the boundary conditions as
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Equation 10-29 can thus be written in terms of the boundary conditions as

Plu) = [ 1w 1] - My
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E Bezier Curves
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* Bezier curve section can be fitted to any number of control
points.

= The number of control points to be approximated and their
relative position determine the degree of the Bezier
polynomial.

= Bezier curve can be specified with boundary conditions

46
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= Suppose we are given n + 1 control-point positions: p, =
(X, ¥,2,), with k varying from 0 to n.
* These coordinate points can be blended to produce the

following position vector P(u), which describes the path of
an approximating Bezier polynomial function between p,

and p,

n

P(u) = > pyBEZ,(u), 0=u=1

k=0

a7



The Bézier blending functions BEZ, ,(u) are the Bernstein polynomials:
BEZ, ,(u) = Cln, k(1 = uy** (10-41)

where the C(n, k) are the binomial coefficients:

n!
Clm, k) = I!'{n b (10-42)

Equivalently, we can define Bézier blending functions with the recursive calcula-
tion

BEZ; () = (1 - W) BEZ,, . (W) + uBEZ, .\, (W), M >k=1 (104

e
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& with BEZ,, = ", and BEZg, = (1 - u)". Vector equation 10-40 represents a set of
&= three parametric equafions for the individual curve coorainates

x(u) = \ Xy BEZ; »(u)
k-0

y(u) = D v, BEZ. ,(w)

k=0

2(u) = > 2, BEZ, (1)

k=0

R
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= Bezier curve is a polynomial of degree one less than the
number of control points used: Three points generate a
parabola, four points a cubic

curve, and so forth.

iaj -1 el

Cxamples of two-dimensional Béz:er curves generated from three, four,

and five control points. Dashed lines connect the control-point
positions.
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E Properties of Bezier Curves

== = Avery useful property of a Bezier curve is that it
always passes through the first and last control points.
That is, the boundary conditions at the two ends of the
curve are

<O
()

Po

I T @R N
||
v
3

51



_ Values of the parametric first derivatives of a Bézier curve at the endpoints
= can be calculated trom control-pomt coordinates as

i (10-47)
P(l) = =np,., + np,

= Thus, the slope at the beginning of the curve is along the ine joining the first two
= control points, and the slope at the end of the curve is along the line joining the
= last two endpoints. Similarly, the parametric second derivatives of a Bézier curve
at the endpoints are calculated as

P'(0) = ntn = Dlips = p)) = (py -~ poll
P'(I) = it = Dlp,-s = Pyt = (Puy = P

(11)-48)
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= Another important property of any Bezier curve is that it lies
within the convex hull (convex polygon boundary) of the
control points.

® This follows from the properties of Bezier blending
functions: They are all positive and their sum is always 1 so

that any curve position is simply the weighted sum of the
control-point positions

N BEZ, Aut =1

g
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= The convex-hull property for a Bezier curve ensures that
the polynomial / smoothly follows the control points without
erratic oscillations.
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Cubic Bezier Curves

* Cubic Bezier curves are generated with four control
points. The four blending functions for cubic Bezier curves,
obtained by substituting

n = 3into Eq. 10-41 are

BEZy4(u) = (1 — u)
BEZ, y(u) = 3u(l — u)?
BEZ, (1) = 311 — w)
BEZ, (1) = 1

55
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" The form of the blending functions determine how the
control points influence the shape of the curve for values of
parameter u over the range from 0 to 1

= Atthe end positions of the cubic Bezier curve, the
parametric first derivatives (slopes) are

P'() = 3p, - pJ. P =3p. p)
And the parametnc second denvatives are

PO =6p, - 2p,+p).  P(D)=0lp, - 2p. ¢ p

56
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= We can use these expressions for the parametric
derivatives to construct piecewise

curves with C1 or C2 continuity between sections.
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Po ]
. P
Pliad = [ 4 1) My, F;

P

where the Bézier matris is

& W B

=3 1]
10
0 0
o 0
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Bezier Surfaces

* Two sets of orthogonal Bezier curves can be used to design
an object surface by specifying by an input mesh of control
points.

* The parametric vector function for the Bezier surface is
formed as the Cartesian product of Bezier blending
functions:

Plu, v) = E E pBEZ,, (VIBEZ, ()
=0 k=0

R T e TN

with p,; specitying the location of the (m + 1) by (x 4 1) control points

=



fal (b)

Figure 10-39

Beézier surfaces constructed for(a) m = 3,1 = 3, and (b) m = 4, n = 4. Dashed lines connect
the control points
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= Bezier surfaces have the same properties as Bezier curves,
and they provide a convenient method for interactive design
applications.

= For each surface patch, we can select a mesh of control
points in the xy "ground"” plane, then we choose
elevations above the ground plane for the z-coordinate
values of the control points.

I O ] M g
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E B-SPLINE CURVES
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* B-splines have two advantages over Bezier splines:
(1) the degree of a B-spline polynomial can

be set independently of the number of control points (with
certain limitations)

(2) B-splines allow local control over the shape of a spline
curve or surface
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= We can write a general expression for the calculation of
coordinate positions along a

B-spline curve in a blending-function formulation as

]

PU) = ) PiBijh), Uy SUS Upy 25dsmtl  (10:54)
k=0

viriicauwi ariv uiat v woacl opinica, 1o ICIIJHG i
parameter u now depends on how we choose the
Bspline parameters.
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Bspline blending functions B ,, are polynomials of degree d -

1, where parameter d can be chosen to be any integer value
in the range from 2 up to the number of control points, n + 1.

Local control for Bsplines is achieved by defining the blending
functions over subintervals of the total range of u.

Blending functions for B-spline curves are defined by the Cox-
deBoor recursion formulas:

1, ifusSu<u,

)= 0, otherwise

(10-53)
= Hl

T O

Upog ™ U
Ri_]-!l“} + - - Bi‘i.ﬂ' ][u}

Bu':“} "
Ugagoy = Wy Mieg = sy
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where each blending function is defined over d subintervals
of the total range of u.

The selected set of subinterval endpoints u, is referred
to as a knot vector.

Values for u,, and u_, then depend on the number of

control points we select, the value we choose for
parameter d, and how we set up the subintervals (knot
vector)

T T T r G
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-spline curves have the following properties

" The polynomial curve has degree d - 1 and C * continuity
over the range of u.

" Forn + 1 control points, the curve is described with n + 1
blending functions.

= Each blending function B , is defined over d subintervals
of the total range of u, starting at knot value u,

= The range of parameter u is divided into n + d subintervals
by the n + d + 1 values specified in the knot vector.
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= With knot values labelled as [u,, u, ,......, u,, ], the resulting
B-spline curve is defined only in the interval from knot value
u, , up to knot value v,

= Each section of the spline curve (between two successive
knot values) is influenced by d control points.

* Any one control point can affect the shape of at most d curve
sections.
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