

UNIT V 19CSE308 – COMPUTER GRAPHICS AND VISUALIZATION Ms.A.Indhuja

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai

Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech&B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT V

CURVED SURFACES
In OpenGL, working with Bezier and B-Spline curves typically requires understanding how

to represent and render them. OpenGL itself does not provide direct functions for drawing

these curves, so you generally implement them using control points and associated

mathematical formulas. Below, I'll outline a basic approach for both Bezier and B-Spline

curves using OpenGL.

1. Bezier Curves

Bezier curves are commonly represented by control points, and the curve is evaluated using

a polynomial formula.

Bezier Curve Formula:

OpenGL Code for Bezier Curve:

#include <GL/glut.h>

struct Point {

 float x, y;

};

Point P0 = {100, 100};

Point P1 = {150, 250};

Point P2 = {250, 250};

Point P3 = {300, 100};

Point bezier(float t, Point P0, Point P1, Point P2, Point P3) {

 Point result;

 result.x = (1-t)*(1-t)*(1-t)*P0.x + 3*(1-t)*(1-t)*t*P1.x + 3*(1-t)*t*t*P2.x + t*t*t*P3.x;

 result.y = (1-t)*(1-t)*(1-t)*P0.y + 3*(1-t)*(1-t)*t*P1.y + 3*(1-t)*t*t*P2.y + t*t*t*P3.y;

 return result;

}

UNIT V 19CSE308 – COMPUTER GRAPHICS AND VISUALIZATION Ms.A.Indhuja

void display() {

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINE_STRIP);

 for (float t = 0; t <= 1.0; t += 0.01) {

 Point p = bezier(t, P0, P1, P2, P3);

 glVertex2f(p.x, p.y);

 }

 glEnd();

 glFlush();

}

int main(int argc, char** argv) {

 glutInit(&argc, argv);

 glutCreateWindow("Bezier Curve");

 glutDisplayFunc(display);

 gluOrtho2D(0.0, 400.0, 0.0, 400.0);

 glutMainLoop();

 return 0;

}

This code defines a cubic Bezier curve and displays it by evaluating the curve for multiple

values of t.

2. B-Spline Curves

B-Splines (Basis Splines) are more general than Bezier curves and can represent curves

with more flexibility. They are typically defined by a set of control points and a set of basis

functions. In the case of a uniform B-Spline, the basis functions are calculated using a

recursive formula, and the B-spline curve is evaluated by summing over the basis functions

and control points.

For simplicity, let's assume we're working with a quadratic B-Spline with a set of control

points.

B-Spline Curve Formula (Quadratic):

UNIT V 19CSE308 – COMPUTER GRAPHICS AND VISUALIZATION Ms.A.Indhuja

OpenGL Code for B-Spline Curve:

#include <GL/glut.h>

struct Point {

 float x, y;

};

Point controlPoints[] = {{100, 100},{150, 250},{250, 250},{300, 100}};

float basisFunction(float t, int i, int degree) {

 if (degree == 2) {

 // Quadratic B-Spline basis function

 if (t >= i && t < i + 1) return t - i;

 if (t >= i + 1 && t < i + 2) return 2 - (t - i);

 return 0;

 }

 return 0;

}

Point bSpline(float t) {

 Point result = {0, 0};

 for (int i = 0; i < 3; i++) { // Only 3 segments for this example

 float basis = basisFunction(t, i, 2);

 result.x += basis * controlPoints[i].x;

 result.y += basis * controlPoints[i].y;

 }

 return result;

}

void display() {

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINE_STRIP);

 for (float t = 0; t <= 2.0; t += 0.01) { // t from 0 to 2 for quadratic

 Point p = bSpline(t);

 glVertex2f(p.x, p.y);

 }

 glEnd();

 glFlush();

}

int main(int argc, char** argv) {

 glutInit(&argc, argv);

 glutCreateWindow("B-Spline Curve");

 glutDisplayFunc(display);

 gluOrtho2D(0.0, 400.0, 0.0, 400.0);

 glutMainLoop();

 return 0;

}

UNIT V 19CSE308 – COMPUTER GRAPHICS AND VISUALIZATION Ms.A.Indhuja

This example shows how to implement a basic quadratic B-Spline curve. It uses a simple

basis function that is not a full general B-Spline implementation, but it gives you the idea of

how to evaluate the curve using the basis functions and control points.

Conclusion

 Bezier curves are evaluated using polynomial formulas based on the number of

control points (e.g., cubic for 4 points).

 B-Spline curves are more flexible and involve evaluating a set of basis

functions. OpenGL does not directly support these types of curves, so you need to

implement them yourself using the appropriate mathematical formulas.

For more complex B-Splines (like Non-Uniform Rational B-Splines (NURBS)), there are

libraries like OpenNURBS that provide advanced support for NURBS curves and surfaces,

which you can integrate with OpenGL.

	COIMBATORE-641 035, TAMIL NADU
	UNIT V
	CURVED SURFACES

