
You’re a database detective investigating suspicious orders in an e-commerce database.

Customers(cust_id PRIMARY KEY, name, email)

Products(prod_id PRIMARY KEY, name, price)

Orders(order_id PRIMARY KEY, cust_id FOREIGN KEY REFERENCES Customers(cust_id), order_date)

OrderItems(order_id FOREIGN KEY REFERENCES Orders(order_id),

 prod_id FOREIGN KEY REFERENCES Products(prod_id),

 quantity,

 PRIMARY KEY(order_id, prod_id))

Returns(order_id FOREIGN KEY REFERENCES Orders(order_id),

 prod_id FOREIGN KEY REFERENCES Products(prod_id),

 return_date,

 PRIMARY KEY(order_id, prod_id))

Clues

1. Some orders exist in the Orders table without any corresponding items in OrderItems. That

shouldn’t happen.

2. Some returns are recorded for products that were never ordered. Suspicious!

3. A trigger should prevent returns if the product wasn’t actually in the order.

4. A view named ValidOrders should show only those orders that have at least one valid item.

5. A stored procedure ProcessReturn should:

o Take order_id and prod_id.

o Check if the product exists in that order.

o If yes, insert into Returns.

o If not, raise an error.

 Your Tasks (Puzzle Steps)

1. Identify the “phantom” orders — orders with no items.

2. Find invalid returns — returns for non-ordered products.

3. Write a view ValidOrders to only include orders with at least one product.

4. Design the BEFORE INSERT trigger on Returns to block invalid returns.

5. Implement the ProcessReturn stored procedure to safely handle returns.

Bonus Challenge

Imagine someone deleted a customer from Customers. What happens to their orders and returns?

 Use referential integrity rules (CASCADE, SET NULL, RESTRICT).

 Propose what behavior the database should enforce and why.

	Clues
	Your Tasks (Puzzle Steps)
	Bonus Challenge

