
SNSCT/CSE Page 1

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35

(An Autonomous Institution)

16CS306 and Composing Mobile Apps

UNIT 3

Android - Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other applications or from the

system itself. These messages are sometime called events or intents. For example, applications

can also initiate broadcasts to let other applications know that some data has been downloaded to

the device and is available for them to use, so this is broadcast receiver who will intercept this

communication and will initiate appropriate action.

There are following two important steps to make BroadcastReceiver works for the system

broadcasted intents −

• Creating the Broadcast Receiver.

• Registering Broadcast Receiver

There is one additional steps in case you are going to implement your custom intents then you

will have to create and broadcast those intents.

Creating the Broadcast Receiver

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and overriding

the onReceive() method where each message is received as a Intent object parameter.

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Toast.makeText(context, "Intent Detected.", Toast.LENGTH_LONG).show();

 }

}

Registering Broadcast Receiver

An application listens for specific broadcast intents by registering a broadcast receiver in

AndroidManifest.xml file. Consider we are going to register MyReceiver for system generated

event ACTION_BOOT_COMPLETED which is fired by the system once the Android system

has completed the boot process.

SNSCT/CSE Page 2

<application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <receiver android:name="MyReceiver">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED">

 </action>

 </intent-filter>

 </receiver>

</application>

Now whenever your Android device gets booted, it will be intercepted by BroadcastReceiver

MyReceiver and implemented logic inside onReceive() will be executed.

There are several system generated events defined as final static fields in the Intent class. The

following table lists a few important system events.

Sr.No Event Constant & Description

1

android.intent.action.BATTERY_CHANGED

Sticky broadcast containing the charging state, level, and other information about the

battery.

2

android.intent.action.BATTERY_LOW

Indicates low battery condition on the device.

3

android.intent.action.BATTERY_OKAY

Indicates the battery is now okay after being low.

4

android.intent.action.BOOT_COMPLETED

This is broadcast once, after the system has finished booting.

5
android.intent.action.BUG_REPORT

Show activity for reporting a bug.

6
android.intent.action.CALL

Perform a call to someone specified by the data.

7

android.intent.action.CALL_BUTTON

The user pressed the "call" button to go to the dialer or other appropriate UI for placing a

call.

SNSCT/CSE Page 3

8

android.intent.action.DATE_CHANGED

The date has changed.

9

android.intent.action.REBOOT

Have the device reboot.

Broadcasting Custom Intents

If you want your application itself should generate and send custom intents then you will have to

create and send those intents by using the sendBroadcast() method inside your activity class. If

you use the sendStickyBroadcast(Intent) method, the Intent is sticky, meaning the Intent you are

sending stays around after the broadcast is complete.

public void broadcastIntent(View view) {

 Intent intent = new Intent();

 intent.setAction("com.tutorialspoint.CUSTOM_INTENT");

 sendBroadcast(intent);

}

This intent com.tutorialspoint.CUSTOM_INTENT can also be registered in similar way as we

have regsitered system generated intent.

<application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <receiver android:name="MyReceiver">

 <intent-filter>

 <action android:name="com.tutorialspoint.CUSTOM_INTENT">

 </action>

 </intent-filter>

 </receiver>

</application>

SNSCT/CSE Page 4

