

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35

UNIT 5NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION MILNE'S PREDICTOR CORRECTOR METHOD FOR SOLVING 1ST ORDER EQUATIONS

1. Solve
$$y'=x-y^2$$
, $0 \le x \le 1$, $y(0)=0$, $y(0.2)=0.02$, $y(0.4)=0.0795$, $y(0.6)=0.1762$ by milnels method. To duid $y(0.8)$ and $y(0)$

Here, $x_0=0$, $y_0=0$
 $x_1=0.2$, $y_1=0.02$
 $x_2=0.4$, $y_2=0.0795$
 $x_3=0.6$, $y_3=0.1762$
 $x_4=0.8$, $y_4=?$
 $x_5=1$, $y_5=?$

By milnels predictor formula,

 $y_{n+1}, p=y_{n-3}+\frac{1}{3}\left[3y'_{n-2}-y'_{n-1}+3y'_{n}\right]$

Put $n=31$
 $y_{n+1}p=y_0+\frac{4}{3}\left[3y'_1-y'_2+3y'_3\right]$

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35

UNIT 5NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION MILNE'S PREDICTOR CORRECTOR METHOD FOR SOLVING 1ST ORDER EQUATIONS

Given!
$$y'=x-y^2$$
 $y'_1=x_1-y_1^2=(0.2)-(0.02)^2=0.1996$
 $y_2'=x_2-y_2^2=(0.1)-(0.0795)^2=0.3937$
 $y_3'=x_3-y_3^2=0.6-(0.1762)^2=0.5690$
 $y_{41p}=0+\frac{110.2}{3}[210.1996)-0.3939+210.5692]$
 $=0.3049$
 $y_4=x_4-y_4^2=(0.8)-(0.3049)^2=0.707$
 $y_{41}=y_4+\frac{1}{3}[y_2'+y_3'+y_4']$
 $=0.0795+\frac{0.3}{3}[0.3939+110.5690)+0.707]$
 $=0.3046$
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046
 0.3046