

(An Autonomous Institution)

Coimbatore-35

DEPARTMENT OF MATHEMATICS

UNIT-IV INTERPOLATION, NUMERICAL DIFFERENTIATION &INTEGRATION

NEWTON'S FORWARD AND BACKWARD DIFFERENCE FORMULA

(EQUAL ENTERVALS)

Let the function $y = f(\pi)$ takes the values y_0, y_1, \dots, y_n at the points $\pi_0, \pi_1, \dots, \pi_n$ where $\chi_t = \pi_0 + i\hbar$. Then Newton's Jorward interpolation polynomial is y_{invers} by $y(\pi) = P_n(\pi) = f(\pi)$ $= y_0 + \frac{u}{1!} Ay_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)\cdots(u-(n-1))}{3!} \Delta^n y_0$ where $u = \frac{\pi - \pi_0}{-\hbar}$; \hbar is the difference between two intervals.

(An Autonomous Institution)

Coimbatore-35

DEPARTMENT OF MATHEMATICS UNIT-IV INTERPOLATION,NUMERICAL DIFFERENTIATION &INTEGRATION

Then Newton's Backward interpolation polynomial
is given by

$$y(x) = P_n(x) = \frac{1}{2}(x)$$

 $= y_n + \frac{u}{1!} \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n$
 $+ \dots + u(u+1)(u+2) \dots (u+(n-1)) \nabla^3 y_n$
where $u = \frac{y_1 - y_n}{-n}$
Note: Jorward Bacleward.
Jinst order: Jinst order:
 $Ay_0 = y_1 - y_0$ $\nabla y_n = y_n - y_{n-1}$
 $Ay_1 = y_2 - y_1$ $\nabla y_{n-1} = y_{n-1} - y_{n-2}$
Second order: Jorward $\nabla^2 y_n = \nabla y_n - \nabla y_{n-1}$
A'y_0 = Ay_1 - Ay_0 $\nabla^2 y_n = \nabla y_n - \nabla y_{n-1}$
Third order: $\nabla^3 y_n = \nabla y_n - \nabla y_{n-1}$

23MAT204–STATISTICS&NUMERICAL METHODS

(An Autonomous Institution)

Coimbatore-35

DEPARTMENT OF MATHEMATICS UNIT-IV INTERPOLATION,NUMERICAL DIFFERENTIATION &INTEGRATION

rising Newton's Forward Interpolation & Backward Interpolation Jormula, Find the polynomial Z(n) satisfying the following data. Hence evaluate yatn=5. 2 4: 6 8 10 3 8 10 . Ч 21n · 4 X A34 (3-1) 4 6 (8-3) (2-5) 8 8 (10.8) 1-3 10 10 ale le la

Coimbatore-35

DEPARTMENT OF MATHEMATICS **UNIT-IV INTERPOLATION, NUMERICAL DIFFERENTIATION** &INTEGRATION

Jorward Enterpolation: Here No= 4; Yo= 1; A=2. $u = \frac{2}{2} \frac{1}{4} \frac{1}{2} \frac{1}{2}$ $y(\pi) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-i)\Delta^2 y_0}{2!} + \frac{u(u-i)(u-2)}{3!} \Delta^3 y_0$ = 1 + $\left(\frac{\chi - 4}{2}\right)(2) + \left(\frac{\chi - 4}{2}\right)\left(\frac{\chi - 4}{2} - 1\right)\frac{(3)}{2^{1}} + \frac{(\chi - 4)}{2}$ $\left(\frac{2^{-4}}{2}\right)\left(\frac{2^{-4}}{2}\right)\left(\frac{2^{-4}}{2}\right)\left(\frac{2^{-4}}{2}\right)\left(\frac{2^{-4}}{2}\right)$ $= 1 + n - 4 + (n - 4)(n - 6) \times \frac{3}{2} + (n - 4)(n - 6)(n - 8) + \frac{3}{2} + \frac{(n - 4)(n - 6)(n - 8)}{8} \times \frac{3}{8}$ = $\chi - 3' + (\chi^2 - 10\chi + 24) \frac{3}{2} + \chi^3 - 8\chi^2 + 104\chi - 192\chi - \frac{1}{8}$ $=\frac{1}{8}\left(8n-24+3n^{2}-30n+72+(-n^{3}+18n^{2}-104n+192)\right)$ $=\frac{1}{8}\left(-x^{3}+21n^{2}-126n+240\right)$ $y(5) = \frac{1}{6} (-(5)^3 + 21 (5)^2 - 126(5) + 240) = 1 25$ Backward 2n terpolation: Hore $2n = 10 \cdot 4n = 10$; h = 2. $U = \frac{\alpha}{2} - 10$

(An Autonomous Institution)

Coimbatore-35

DEPARTMENT OF MATHEMATICS UNIT-IV INTERPOLATION,NUMERICAL DIFFERENTIATION &INTEGRATION

$Y(x) = Y_{2,2} (1 - (1 + 1)) - 2 + (1 + 1) + (1 + 1)$
$V_{y_n} = V_{y_n} + V_{y_n} + U_{(u+1)} + V_{y_n} + U_{(u+1)} + V_{y_n}$
$y(x) = y_n + \frac{u}{1!} \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + u(u+1)(u+2) \nabla^3 y_n$
and the training the
-10 + (n-10)(-3) + (n-10)(-3)
$= 10 + \left(\frac{n-10}{2}\right)(2) + \left(\frac{n-10}{2}\right) \left(\frac{n-10}{2}+1\right) \left(-\frac{3}{2!}+1\right) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $
/ 21+10 / n-10) / n-10) (-0)
$\left(\frac{2i+10}{2}\right)\left(\frac{n-10}{2}+1\right)\left(\frac{n-10}{2}+2\right)\frac{(-6)}{3!}$