

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & D. Tech.IT)

(An Autonomous Institution)
Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Cycle III)

Puzzle: The Secret Code

A password consists of 4 different letters selected from the English alphabet (A-Z). However, the password must start with a vowel and no letter can repeat.

Ouestion:

How many such 4-letter passwords are possible?

Answer:

Step 1: Choose the first letter (must be a vowel)

- There are 5 vowels in English: A, E, I, O, U
- So, 5 choices for the **first** letter

Step 2: Choose the remaining 3 letters

- After choosing 1 vowel, 25 letters are left (26 1)
- We need to choose 3 more letters from the remaining 25 without repetition

So, number of ways to choose and arrange 3 remaining letters =

$$P(25,3)=25\times24\times23$$

Step 3: Total number of passwords =

$$5 \times 25 \times 24 \times 23 = 69,000$$

(An Autonomous Institution)
Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Composition (Cycle III) & Composition (Cycle III) & Composition (Cycle III) & Composition (Cycle III) & Cycle III)

Puzzle: Committee Formation

A company has 8 men and 6 women. A team of 5 people is to be formed such that at least 2 women must be in the team.

Question:

In how many ways can this team be formed?

Answer:	
We are to form a te	eam of 5 people with at least 2 women, from 8 men and 6 women.
We'll break it into co	ases:
Case 1: 2 women,	3 men
Choose 2 women fr	rom 6: $\binom{6}{2} = 15$
Choose 3 men from	
Total ways: $15 imes 56$	5 - 840
Case 2: 3 women, 2	2 men
$\binom{6}{3} = 20, \binom{8}{2} = 2$	18
Total: $20 \times 28 = 5$	560 Done ↓
	Case 3: 4 women, 1 man
	$\binom{6}{4} = 15, \binom{8}{1} = 8$
	Total: $15 \times 8 = 120$
	Case 4: 5 women, 0 men
	$\binom{6}{5} = 6$
	Total: 6
	✓ Total number of ways:
	840 + 560 + 120 + 6 = 1,526 ways