SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT)

Puzzle: The Card Draw

A standard deck of 52 playing cards is well shuffled. One card is drawn at random.

Question:

What is the probability that the card drawn is either a **red card** or a **king**?

~	Answer:
A	tandard deck has:
•	52 cards total
•	26 red cards (13 Hearts + 13 Diamonds)
•	4 kings (one in each suit)
_	
No	w let's apply the Addition Rule of Probability:
	P(Red or King) = P(Red) + P(King) - P(Red and King)
•	$P(\text{Red}) = \frac{26}{52}$
•	$P(\text{King}) = rac{4}{52}$
•	There are 2 red kings (King of Hearts and King of Diamonds), so:
	• $P(\text{Red and King}) = \frac{2}{52}$
	$P = \frac{26}{52} + \frac{4}{52} - \frac{2}{52} - \frac{28}{52} = \boxed{\frac{7}{13}}$

 $\frac{7}{13}$

SNSCT

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT)

Puzzle: The Painted Box

A cube has all its faces painted. It is then cut into 64 smaller equal cubes.

Question:

How many of the smaller cubes will have **exactly one face painted**?

Step) 1 :
•	The large cube is divided into $64=4^3$ smaller cubes
•	So, the original cube has 4 divisions along each edge
Step	2: Understanding cube layers:
Only	the cubes on the faces, not at the edges or corners, will have exactly one face painted.
Each	face of the cube is a 4×4 grid = 16 cubes
•	On each face, the cubes that are not at the edge form a $(4-2) \times (4-2) = 2 \times 2 = 4$ cube section (these are the inner face cubes)
Step	o 3:
•	Each face contributes 4 such cubes with exactly one face painted
	A cube has 6 faces, so:
	$6 \times 4 = 24$ small cubes have exactly one face painted
	Final Answer:
	24
	Done 4