

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

CourseCode:	23MAT102
CourseName:	COMPLEX ANALYSIS AND LAPLACE TRANSFORMS
Year/Sem:	I/II

QUESTION BANK UNIT-I VECTOR CALCULUS

	Unit-I /Part-A/2Marks			
S.No	Questions	Mark Splitup	K – Level	СО
1.	Find $\nabla(r^n)$.	2	K2	C01
2.	Find $\nabla(logr)$.	2	K2	CO1
3.	Find grad ϕ if $\phi = 3x^2y - y^3z^2$ at the point (1,-2,-1).	2	K2	C01
4.	Find the unit normal to the surface $x^2+y^2-z^2=1$ at (1,1,1).	2	K2	C01
5.	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the Point $(1, -2, -1)$ in the direction of $2\vec{i} - \vec{j} - 2\vec{k}$.	2	K2	C01
6.	Prove that $divr \rightarrow = 3$ and $curlr \rightarrow = 0 \rightarrow .$	2	K1	C01
7.	Show that $F^{\rightarrow\rightarrow} = (x+2y)i^{\rightarrow} + (y+3z)j^{\rightarrow} + (x^2-2z)k^{\rightarrow}is$ solenoidal.	2	K1	C01
8.	Find a such that $F^{\rightarrow\rightarrow} = (3x-2y+z)i^{\rightarrow} + (4x+ay-z)j^{\rightarrow} (4x-y+2z)k^{\rightarrow}$ is solenoidal.	2	К2	C01
9.	Prove that $\vec{F} = yz\vec{i} + zx\vec{j} + xyk\vec{k}$ is irrotational.	2	K2	C01
10.	Find the values of a,b,c so that the vector $F^{\leftrightarrow \rightarrow} = (x+y+az)i^{\rightarrow} + (bx+2y-z)j^{\rightarrow} + (-x+cy+2z)k^{\rightarrow \rightarrow}s$ irrotational.	2	K2	C01
11.	Find the values of <i>a,b,c</i> so that the vector $F \xrightarrow{\leftrightarrow} = (x+2y+az)i \xrightarrow{\leftrightarrow} + (bx-3y-z)j \xrightarrow{\leftrightarrow} + (4x+cy+2z)k \xrightarrow{\leftrightarrow}$ is irrotational.	2	K2	C01
12.	If \vec{A} and \vec{B} are irrotational, then prove that $\vec{A} \times \vec{B}$ is solvidal.	2	K2	CO1
13.	Prove that $\operatorname{curl}(\operatorname{grad}\phi)=0^{}$.	2	K2	C01
14.	If $F^{\leftrightarrow \rightarrow} = x^3 i^{\rightarrow} + y^3 j^{\rightarrow} + z^3 k^{\rightarrow}$, then find $div(curl F^{\leftrightarrow \rightarrow})$.	2	K1	C01
15.	State Green's theorem.	2	K1	C01
16.	Find area of a circle of radius a using Green's theorem	2	K2	C01
17	State Gauss divergence theorem.	2	K1	C01
18	State Stoke'stheorem.	2	K1	CO1

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

	Unit - I / Part - B/ 16, 8 Marks			
S.No	Questions	Marks Solitup	K - Level	CO
1.	Find the angle between the surfaces $x \log z = y^2 - 1$ and $x^2y = 2 - z$ at the point $(1, 1, 1)$. Find a and b so that the surfaces $ax^3 - by^2z - (a + 3)x^2 = 0$	8	K2	CO1
2.	And $4x^2y - z^3 - 11 = 0$ cut orthogonally at the point $(2, -1, -3)$.	8	K2	CO1
3.	Find <i>a</i> and <i>b</i> so that the surfaces $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at the point $(1, -1, 2)$.	8	K2	CO 1
4.	Show that $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational vector and find the scalar potential ϕ such that $\vec{F} = \nabla \phi$	8	K2	C01
5.	Prove that $\vec{F} = (y^2 \cos x + z^3)\vec{i} + (2y \sin x - 4)\vec{j} + 3xz^2\vec{k}$ is irrotational and find its scalar potential.	8	К2	CO1
6.	If \vec{r} is the position vector of the point (x, y, z) , Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$. Hence find the value of $\nabla^2 \left(\frac{1}{r}\right)$.	8	K2	C01
7.	If $\vec{A} = (3x^2 + 6y)\vec{i} + 14yz\vec{j} + 20xz^2\vec{k}$, evaluate $\int_C \vec{A} \cdot d\vec{r}$ (0, 0, 0) to (1, 1, 1) over the curve $x = t$, $y = t^2$, $z = t^3$ and \vec{r} is the position vector.	8	K3	C01
8.	Find the work done by the force $\vec{F} = (x^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$ which moves a particle in xy plane from (0, 0) to (1, 1) along the parabola $y^2 = x$.	8	K3	CO 1
9.	Verify Green's theorem for $\int_C [(xy + y^2) dx + x^2 dy]$ where C is the boundary of the common area between $y = x^2$ and $y = x$.	16	K3	CO 1
10.	Verify Green's theorem in a plane for $\int_{C} [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$, where C is the boundary of the region defined by $x = y^2$, $y = x^2$.	16	K3	CO 1
11.	Verify Green's theorem in a plane for $\int_C [3x - 8y^2)dx + (4y - 6xy)dy]$, where <i>C</i> is the boundary of the region defined by the lines $x = 0$, $y = 0$ and $x + y = 1$.	16	K3	C01
12.	Verify Gauss Divergence theorem for $\vec{F} = 4xz \ \vec{i} - y^2 \ \vec{j} + yz \ \vec{k}$ over the cube bounded by $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.	16	K3	CO 1
13.	Verify Gauss Divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ taken over the rectangular parallelopiped bounded by $x = 0, y = 0, z = 0$ and $x = a, y = b, z = c$.	16	К3	C01

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

14.	Verify Gauss Divergence theorem for the vector function $\vec{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + 2\vec{k}$ over the cube bounded by $x = 0, y = 0, z = 0$ and $x = a, y = a, z = a$.	16	K3	CO1
15.	Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.	16	K3	CO 1
16.	Verify Stoke's theorem for $\vec{F} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - xz \vec{k}$ over the cube bounded by $x = 0, y = 0, z = 0$ and $x = 1, y = 1, z = 1$.	16	K3	C01
17.	Verify Stoke's theorem for $\vec{F} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = 0$, $x = a$, $y = 0$, y = b.	16	K3	C01

UNIT - II

	Unit - II / Part - A / 2 Marks							
S.No	Questions	Mark Splitup	K - Level	00				
1.	Solve $(D^{2} + 5D + 4) = 0$.	2	K2	CO 2				
2.	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 2y = 0.$	2	K2	C02				
3.	Solve $\frac{d^4y}{dx^4} = 16y$.	2	K2	C02				
4.	Solve $(D^4 - 2D^3 + D^2)y = 0$.	2	K2	C02				
5.	Solve $(D^4 - 2D^2 + 1)y = 0$.	2	K2	C02				
6.	Solve $y''' + 2y'' + y' = 0$.	2	K2	C02				
7.	Solve $(D^3 + 1)y = 0$	2	K2	C02				
8.	Solve $(D^2 + 1)y = e^{-x}$.	2	K2	C02				
9.	Find the particular integral of $(D^2 - 4)y - e^{2x}$.	2	K2	C02				
10.	Find the particular integral of $(D^3 + 8)y - e^{-2x}$	2	K2	C02				
11.	Find the particular integral of $(D^2 - a^2)y - e^{at}$.	2	K2	C02				
12.	Find the particular integral of $(D-m)^2 y - e^{mx}$	2	K2	C02				
13.	Find the complementary function of $(D^2 + 4)^2 = \cos x$	2	K2	C02				
14.	Find the particular integral of $(D^4 + D^2)y = \sin x$	2	K2	C02				
15.	Find the particular integral of $(D-1)^2 - \sinh 2x$	2	K2	C02				
16.	Find the particular integral of $(D-1)^2 y = \cosh 2x$	2	K2	C02				
17.	Find the particular integral of $\frac{d^2y}{dx^2} + 4y - \sin 2x$.	2	K2	C02				

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

18.	Find the particular integral of $(D^4 + D^2)y = \sin x$	2	K2	CO2
19	Find the particular integral of $(D^2 + 2)y - x^2$.	2	K2	CO2
20.	Find the particular integral of $(D+1)^2 y = e^{-x} \cos x$.	2	K2	CO2
21.	Find the particular integral of $(D^2 - 2D + 5)y - e^x \sin 2x$	2	K2	CO2
22.	Find the particular integral of $(D^2 - 2D + 5)y - e^x \sin 2x$	2	K2	CO2
23.	Reduce the equation $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$ to homogeneous differential equation with constant coefficients.	2	K2	CO 2
24.	$Solve(x^2D^2 + xD)y = 0.$	2	K2	CO2
25.	Solve $x^2y'' - 2xy' + 2y = 0$.	2	K2	CO2
26.	Transform $(x+2)^2 \frac{d^2y}{dx^2} - (x+2)\frac{dy}{dx} + y = 3x + y$ in to differential equation with constant coefficients.	2	K2	CO2
27.	Eliminate x and find the equation in y from $\frac{dx}{dt} + 5x - 2y = t$; $\frac{dy}{dt} + 2x + y + = 0$.	2	K2	CO 2

	Unit - II / Part - B / 16, 8 Marks					
S.No	Questions	Marks Splitup	K - Level	co		
1.	Solve $(D^2 + 4D + 3)y = e^{-x} \sin x + xe^{3x}$.	8	K2	CO2		
2.	Solve $(4D^2 - 4D + 1)y = 4$.	8	K2	CO2		
3.	Solve $(D^2 - 4D + 13)y = e^{2x} \sin 3x$.	8	K2	CO2		
4.	Solve $(D^3 + 5D + 4)y = 4e^{-x} + x$.	8	K2	CO2		
5.	Solve $(D^2 + 4)y - x^2 \cos 2x$.	8	K2	CO2		
6.	Solve $(D^2 + 16)y = \cos^3 x$.	8	K2	CO2		
7.	Solve $y^{11} - 2y^1 + y - xe^x \sin x$.	8	K2	CO2		
8.	Solve $(D^2 + 4D + 5)y = e^x + x^3 + cos2x + 1$	8	K2	CO2		
9.	Solve $(D^2 + a^2)y = \tan ax$ by the method of variation of parameters.	8	K2	CO2		
10.	Solve $(D^2 + 4)y = \sec 2x$ by the method of variation of parameters.	8	K2	CO2		
11.	Solve $(D^2 - 4D + 4)y = e^{2x}$ by the method of variation of parameters.	8	K2	CO2		
12.	Solve $y^{11} + 9y = \cot 3x$. by the method of variation of parameters.	8	K2	CO2		

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

-				
13.	Solve $(D^2 + 1)y = x \sin x$ by the method of variation of parameters.	8	K2	CO2
14.	Solve $(D^2 + 1)y = cosecx$ by the method of variation of parameters.	8	K2	CO2
15.	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = x^2 + \cos(\log x)$.	8	K3	C02
16.	Solve $(x^2D^2 - xD + 1)y - \left(\frac{\log x}{x}\right)^2$.	8	K3	C02
17.	Solve $(x^2D^2 - 3xD + 5)y = x^2 \sin(\log x)$.	8	K3	CO2
18.	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$	8	K3	C02
19.	Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y - 3x^2 + 4x + 1$.	8	К3	C02
20.	Solve $((1 + x)^2 D^2 + (1 + x)D + 1)y = 4 \cos[\log(1 + x)]$	8	K3	C02
21.	Solve $((1+x)^2D^2 + (1+x)D + 1)y = 2 \sin \log(1+x)$.	8	K 3	CO2
22.	Solve $(x+2)^2 \frac{d^2y}{dx^2} - (x+2)\frac{dy}{dx} + y = 3x + 4.$	8	К3	C02
23.	Solve the simultaneous equations $\frac{dx}{dt} + 2x - 3y = 5t; \frac{dy}{dt} - 3x + 2y = 0 \text{ given that } x(0) = 0 \& y(0) = -1.$	8	K3	C02
24.	Solve the simultaneous equations $\frac{dx}{dt} + 2y + sint = 0$; $\frac{dy}{dt} - 2x - cost = 0$ given that $x = 0$ and $y = 1$ at $t = 0$.	8	K3	CO2
25.	Solve the simultaneous equations $\frac{dx}{dt} + 2y = 5e^t$; $\frac{dy}{dt} - 2x = 5e^t$ given that $x = -1$ and $y = 3$ at $t = 0$.	8	K3	C02
26.	Solve the following simultaneous differential equations $\frac{dx}{dt} + 2y = \sin 2t ; \frac{dy}{dt} - 2x = \cos 2t.$	8	K3	CO2
27.	Solve the following simultaneous differential equations $Dx + y = \sin 2t$; $-x + Dy = \cos 2t$.	8	K3	CO2
28.	Solve the following simultaneous differential equations $\frac{dx}{dt} - \frac{dy}{dt} + 2y = \cos 2t, \frac{dx}{dt} + \frac{dy}{dt} - 2x = \sin 2t$	8	K3	C02

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

UNIT - III

	Unit - II / Part - A / 2 Marks			
S.No	Questions	Mark Splitup	K - Level	co
1.	Define analytic function of a complex variable.	2	K2	CO3
2.	Write the necessary condition for $f(z)$ to be analytic	2	K2	CO3
3.	Check whether $w = \varepsilon$ is analytic everywhere.	2	K2	CO3
4.	Test the analyticity of the function $w = \sin z$.	2	K2	CO3
5.	Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or not.	2	K1	CO3
6.	For what values of a, b and c the function. f(z) = x + ay - i (bx + cy) is analytic.	2	K3	CO3
7.	Verify the function $u = log \sqrt{x^2 + y^2}$ is harmonic or not?	2	K3	CO3
8.	Show that $u = 2x (1 - y)$ is harmonic. Find the value of m if $u = 2x^2 - my^2 + 3x$ is harmonic.	2	K1	CO3
9.	-	2	K1	CO3
10.	Prove that an analytic function whose real part is constant must itself be a constant.	2	K1	CO3
11.	Prove that an analytic function with constant imaginary part is constant.	2	K1	CO3
12.	Construct the analytic function $f(z)$ for which the real part is $e^{z} cosy$.	2	K1	CO3
13.	Define conformal mapping.	2	K1	C03
14.	Find the image of the circle $ z = 3$ under the transformation $w = 2z$.	2	K1	CO3
15.	Find the critical points of the transformation $w^2 = (z - \alpha)(z - \beta)$.	2	K1	CO3
16.	Find the invariant points of the bilinear transformation $w = \frac{1+x}{1-x}$.	2	K1	C03
17.	Find the fixed points of the transformation $w = \frac{6x-9}{x}$.	2	K2	C03
18.	Define bilinear transformation.	2	K2	CO3

	Unit - III / Part - B / 16, 8 Marks			
S.No	Questions	Marks Splitup	K - Level	60
1.	Prove that the real and imaginary parts of an analytic function are harmonic functions.	8	K2	CO3
2.	Show that an analytical function with constant modulus is constant.	8	K2	CO3
3.	If $w = u(x, y) + i v(x, y)$ is an analytic function the curves of the family $u(x, y) = a$ and the curves of the family $v(x, y) = b$ cut orthogonally, where a and b are varying constants.	8	K2	CO3

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

4.	If $f(z)$ is a regular function of z , then prove that $\nabla^2 f(z) ^2 = 4 f'(z) ^2$.	8	K2	CO3
5.	If $f(z)$ is an analytic (regular) function of z, then prove that	8	K2	C03
	$\nabla^2 \log f(z) = 0.$ Determine the analytic function where real part is			
6.	$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1.$	8	K2	C03
7.	Find an analytic function $u = e^{x}(x \cos y - y \sin y)$ also find conjugate harmonic function	8	К2	CO3
8.	Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic and determine its conjugate. Also find $f(z)$.	8	К2	CO3
9.	Determine the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y - \cos 2x}$.	8	K2	CO3
10.	Find the analytic function $f(z) = u + iv$ given that $2u + 3v = e^{x}(cosy - siny).$	8	К2	CO3
11.	Show that $v = e^{-x}(x \cos y + y \sin y)$ is harmonic function. Hence find the analytic function $f(z)$.	8	К2	CO3
12.	Find the analytic function $f(z) = u + iv$ given that $u - v = e^{z}(cosy - siny).$	8	К2	CO3
13	Find the analytic function $f(z) = u + iv$, if $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$	8	K2	CO 3
14.	Find the image of the circle $ z - 2i = 2$ under the transformation $w = \frac{1}{r}$.	8	КЗ	CO3
15.	Find the image of the circle $ z - 1 = 1$ under the transformation $w = \frac{1}{x}$.	8	К3	C03
16.	Find the image of the infinite strips (i) $\frac{1}{4} < y < \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{2}$.	8	К3	CO3
17.	Find the image of the half plane $x > c$, when $c > 0$ under the transformation $w = \frac{1}{x}$. Show the regions graphically.	8	К3	C03
18.	Find the image of infinite strip $1 < x < 2$ under the transformation $w = \frac{1}{x}$.	8	К3	C03
19.	Find the bilinear transformation that maps the points $z = 0, -1, i$ into the points $w = i, 0, \infty$ respectively.	8	K3	CO3
20.	Find the bilinear transformation that maps the points $z = -2, 0, 2$ into the points $w = 0, i, -i$ respectively	8	K3	CO3
21.	Find the bilinear mapping which maps points $z = 0, 1, \infty$ into $w = i, 1, -i$ respectively.	8	K3	CO3
22.	Find the bilinear transformation that transforms the points $z = 1, i, -1$ into the points $w = 2, i, -2$ respectively.	8	K3	CO3
23.	Find the bilinear transformation that maps the points $z = 0, 1, \infty$ of the z- plane into the points $w = -5, -1, 3$ of the w- plane. Also find its fixed (Invariant) points.	8	K3	C03
24.	Find the bilinear transformation that transforms the points $z = 1, i, -1$ into the points $w = 2, i, -2$ respectively. Also	8	K3	CO3

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

	find its fixed(Invariant) points.			
25.	Find the bilinear transformation which maps the points $1, i, -1$ onto points $0, 1, \infty$, show that the transformation maps the interior of the circle of the <i>z</i> -plane onto the upper half of the <i>w</i> plane.		K3	C03
26.	Find the bilinear transformation that transforms -1 , 0, 1 of the z-plane onto -1 , $-i$, 1 of the w-plane. Show that under this transformation the upper half of the z-plane maps on to the interior of the unit circle $ w = 1$.	8	K3	C03

UNIT - IV

Unit - IV / Part - A / 2 Marks				
S.No	Questions	Mark Splitup	K - Level	co
1.	State Cauchy's Integral Theorem	2	K1	C04
2.	Write Cauchy's Integral formula and its derivatives.	2	K1	C04
3.	Define Taylor's Series	2	K1	C04
4.	Expand $\frac{1}{z-2}$ at $z = 1$ in Taylor's series.	2	K2	C04
5.	Define Laurent's Series Expansion.	2	K1	C04
6.	Define pole and give an example.	2	K1	C04
7.	Define an isolated singularity and give an example.	2	K1	CO4
8.	Define Essential singularity and give an example.	2	K1	CO4
9.	Define Removable singularity and give an example.	2	K1	C04
10.	Define Residue.	2	K1	C04
11.	Discuss the nature of the singularity of the function $\frac{\sin x - x}{x^3}$	2	K2	C04
12.	Discuss the nature of the singularity of the function $\frac{e^{\frac{1}{2}}}{(z-a)^2}$	2	K2	C04
13.	Discuss the nature of the singularity of the function $\frac{e^x}{x^2+4}$	2	K2	C04
14.	Discuss the nature of the singularity of the function $\frac{\cot(\pi x)}{(x-a)^3}$	2	K2	C04
15.	State Cauchy's Residue Theorem	2	K2	C04
16.	Find the residue of $\frac{1-e^{2z}}{z^4}$ at $z = 0$	2	K2	C04
17.	Evaluate $\int_{C} \frac{dz}{z+4}$ where C is the circle $ z = 2$.	2	K2	C04
18.	Find the residue of the function $f(z) = \frac{4}{z^3(z-2)}$.	2	K1	C04

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

	Unit - IV / Part - B/ 16, 8 Marks				
S.No	Questions	Marks Splitup	K - Level	CO	
1.	Evaluate $\int_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(x-1)(x-2)} dz$, Where $C: z = 3$ by using Cauchy's integral formula.	8	К2	CO 4	
2.	Evaluate $\int_{C} \frac{\cos \pi z^2}{(x-1)(x-2)} dz$, where $C: z = \frac{3}{2}$	8	K2	C04	
3.	Evaluate $\int_C \frac{z}{(z-2)^{\frac{1}{2}}(z-1)} dz$, where <i>C</i> is the circle $ z-2 = \frac{1}{2}$ by using Cauchy's integral formula.	8	K2	CO 4	
4.	Using Cauchy's integral formula, evaluate $\int_C \frac{(z+4)}{(z^2+2z+5)} dz$, where <i>C</i> is the circle $ z+1+i = 2$.	8	K2	CO4	
5.	If $f(a) = \int_C \frac{3x^2 + 7x + 1}{x - a} dx$, where $C: Z = 2$, find $f(3), f(1), f'(1 - i) \otimes f''(1 - i)$	8	K2	C04	
6.	$\frac{f(3), f(1), f'(1-i) \& f''(1-i)}{\sum_{C (x+1)^2 (x-2)}^{dx}}$ where C is the circle $ z = \frac{3}{2}$.	8	K2	CO4	
7.	Find the Taylor's Series to represent the function $\frac{x^2-1}{x^2+5x+6}$ in the region (i) $2 < z < 3$ and (ii) $ z < 2$	8	K2	CO 4	
8.	Expand $\frac{1}{z^2-3z+2}$ in the region (i) $1 < z < 2$ (ii) $ z-1 < 1$ and (iii) $ z > 2$.	8	K2	CO 4	
9.	Expand $f(z) = \frac{1}{(z+1)(z+3)}$ as a Laurent's Series if $1 < z < 3$ and $ z > 3$	8	K2	C04	
10.	Find the Laurent's series expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ in 1 < z+1 < 3	8	K2	CO4	
11.	Expand $f(z) = \frac{z}{(z+1)(z+2)}$ as Laurent's series valid in the following (i) $1 < z < 2$. (ii) $ z - 1 < 1$ and (iii) $ z > 2$	8	K2	CO 4	
12.	Evaluate $\int_C \frac{z^2}{(z-1)^2(z+2)} dz$, where <i>C</i> is the circle $ z = 3$, using Cauchy's Residue Theorem.	8	K2	C04	
13.	Evaluate $\int_C \frac{x-1}{(x+1)^2(x-2)} dz$, where $C: z - i = 2$, using Cauchy's Residue Theorem.	8	K2	C04	

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

14.	Evaluate $\int_C \frac{dx}{(x^2+4)^2}$, where <i>C</i> is the circle $ z - i = 2$, using Cauchy's Residue Theorem.	8	K2	CO4
15.	Evaluate $\int_C \frac{z}{(z^2+1)^2} dz$, where C is the circle $ z - i = 1$, using Cauchy's Residue Theorem.	8	K2	CO4
16.	Using Cauchy's Residue Theorem to evaluate $\int_C \frac{3z^2+z+1}{(z^2-1)(z-3)} dz$, where <i>C</i> is the circle $ z = 2$	8	К2	C04
17.	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$ by using contour integration.	8	K3	CO4
18.	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\sin\theta}$ by using contour integration.	8	K3	CO4
19.	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$ by using contour integration	8	K3	CO4
20.	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13+5\cos\theta}$ by using contour integration	8	K3	CO4
21.	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13+5\sin\theta}$ by using contour integration.	8	К3	CO4
22.	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5-4\sin\theta}$ by using contour integration	8	К3	CO4
23.	Evaluate $\int_{0}^{2\pi} \frac{\cos m\theta}{a+b\cos \theta} d\theta$ by using contour integration	8	К3	CO4
24.	Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5-4\cos \theta} d\theta$ by using contour integration	8	К3	CO4
25.	Evaluate $\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2}+a^{2})(x^{2}+b^{2})}$, $a > 0, b > 0$ using contour integration.	8	K3	CO4
26.	Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}$, $a > 0$, $b > 0$ using contour integration.	8	K3	CO4
27.	Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2+4)(x^2+9)}$, $a > 0, b > 0$ using contour integration.	8	K3	CO4
28.	Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$ using contour Integration.	8	К3	CO4
29.	Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using contour integration	8	К3	C04
30.	Evaluate $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2+1} dx$, $a > 0$			C04
31.		8	K3	
.31.	Evaluate $\int_0^{\infty} \frac{x \sin mx}{x^2 + a^2} dx$, $a > 0, m > 0$	8	K3	CO4

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

UNIT - V

Unit - V / Part - A / 2 Marks				
S.No	Questions	Mark Splitup	K - Level	co
1.	Define Laplace Transform of $f(t)$.	2	K1	CO5
2.	Change of scale of Laplace Transform. (or) If $L[f(t)] = F(s)$, then $L[f(at)] = \frac{1}{a} F\left(\frac{s}{a}\right), a > 0$.	2	K1	CO5
3.	State and prove First Shifting property.	2	K1	CO5
4.	Find L[t sin at]	2	K1	CO5
5.	Find $L[t^2 e^{-3t}]$	2	K1	CO5
6.	$L[sin^2 2t]$	2	K1	CO5
7.	Find L[sin St cos 2t]	2	K1	CO5
8.	Find $L\left[\frac{\sin at}{t}\right]$. Hence, show that $\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$	2	K1	CO 5
9.	Find $L[te^{-t} \sin t]$	2	K1	CO5
10.	Find L[t sin 3t cos 2t]	2	K1	CO5
11.	Find the inverse Laplace Transforms of $\frac{s-3}{s^2+4s+13}$	2	K1	CO5
12.	State Initial and Final value theorems.	2	K1	CO5
13.	Find the Laplace Transform of Unit step function.	2	K1	CO5
14.	Verify the Initial value theorem for the function $f(t) = ae^{-bt}$.	2	K1	CO5
15.	State Convolution Theorem in Laplace Transform.	2	K1	CO5

	Unit - V / Part - B / 16, 8 Marks				
S.No	Questions	Marks Splitup	K - Level	00	
1.	Find $L\left[\frac{cosat-cosbt}{t}\right]$	8	K2	C05	
2.	Find $L\left[\frac{1-e^{t}}{t}\right]$	8	K2	C05	
3.	Verify the initial and final value theorem for the function $f(t) = 1 + e^{-t} (sint + cost)$.	4	К2	C05	
4.	Verify the initial and final value theorem for the function $f(t) = 3e^{-2t}$.	4	К2	C05	
5.	Find the Laplace transform of the periodic function $f(t) = \begin{cases} t & 0 \le t \le a \\ 2a - t, & a < t \le 2a \end{cases} \text{ and } f(t + 2a) = f(t).$	8	K2	C05	
6.	Find the Laplace transform of the periodic function $f(t) = \begin{cases} t & 0 \le t \le 1\\ 2-t, & 1 < t \le 2 \end{cases} \text{ and } f(t+2) = f(t).$	8	К2	C05	

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

	1		-	
7.	Find the Laplace transform of the square wave given by $f(t) = \begin{cases} E, & 0 < t < \frac{T}{2} \\ -E, & \frac{T}{2} \le t \le T \end{cases} \text{ and } f(t+T) = f(t).$	8	K2	C05
8.	Find the Laplace transform of the square wave given by $f(t) = \begin{cases} 1, & 0 < t < \frac{a}{2} \\ -1, & \frac{a}{2} \le t \le a \end{cases} \text{ and } f(t+a) = f(t).$	8	K2	C05
9.	Find the Laplace transform of the half wave rectifier $f(t) = \begin{cases} \sin \omega t, & 0 < t \le \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases} \text{ and } f\left(t + \frac{2\pi}{\omega}\right) = f(t).$	8	K2	CO 5
10.	Using convolution theorem find $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$	8	K2	CO 5
11.	Using convolution theorem find $L^{-1}\left[\frac{s^2}{(s^2+4)(s^2+9)}\right]$	8	К2	C05
12.	Using convolution theorem find $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$	8	К2	C05
13.	Using convolution theorem find $L^{-1}\left[\frac{1}{(s+1)(s^2+1)}\right]$	8	К2	C05
14.	Using convolution theorem find $L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right]$	8	K2	C05
15.	Using convolution theorem find $L^{-1}\left[\frac{1}{(x^2+a^2)^2}\right]$	8	K2	C05
16.	Solve the difference equation $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{-t}$ with $y(0) = 1$ and $y(0) = 0$, using Laplace transform.	8	K2	CO 5
17.	Using Laplace transform, solve $\frac{d^2y}{dt^2} + 9y = \cos 2t$ given $y(0) = 1$, $y\left(\frac{\pi}{2}\right) = -1$.	8	K2	C05
18.	Solve $y'' + 5y' + 6y = 2$, $y(0) = 0$, $y'(0) = 0$ using Laplace transform.	8	K2	C05
19.	Using Laplace transforms, solve $y^* + y' = t^2 + 2t$, $y(0) = 4$, y'(0) = -2.	8	K2	C05
20.	Using Laplace transform, solve $(D^2 - 3D + 2)y = e^{-3t}$ given y(0) = 1 and $y'(0) = -1$	8	K2	C05
21.	Solve $\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 2$, given $x = 0$ and $\frac{dx}{dt} = 5$ for $t = 0$, using Laplace transform method.	8	K2	C05