SNS COLLEGE OF TECHNOLOGY O

Coimbatore-35.
An Autonomous Institution

COURSE NAME : 19CST101 PROGRAMMING FOR PROBLEM SOLVING
I YEAR/I SEMESTER
UNIT-IV FUNCTIONS AND POINTERS

Topic: Pointers

Ms.Thilagarani P
Assistant Professor
Department of Information Technology

e

Pointers ~I

N

C Pointers

Pointers are powerful features of C and C++ programming. Before we learn pointers, let's

learn about addresses in C programming.

AddressinC

If you have a variable var inyour program, &var will give you its address in the memory.

We have used address numerous times while using the scanf() function.

scanf("%d", &var):

02/04/2025

Pointers D !

rorons

Here, the value entered by the user is stored in the address of var variable. Let's take @
working example.

#include <stdio.h>
int main()

{
int var = 5;
printf(“var: %d\n", var);
// Notice the use of & before var
printf("address of var: %p", &var);
return 0;
} Output
var: 5

address of var: 2686778

02/04/2025

e

Pointers ~I

C Pointers |

Pointers (pointer variables) are special variables that are used to store addresses rather than
values.

Pointer Syntax

Here is how we can declare pointers.

int* p;
Here, we have declared a pointer p of int type.
You can also declare pointers in these ways.

int *p1;
int * p2:

02/04/2025

73
X<, -~

A Pointers S¢S

N

Let's take another example of declaring pointers.

Int® pl, p2:

Here, we have declared a pointer p1 and a normal variable p2 .

02/04/2025

Pointers

rorons

Assigning addresses to Pointers

Let's take an example.

int* pc, c;
c = 5
pc = &c;

Here, 5 is assigned to the ¢ variable. And, the address of ¢ is assigned tothe pc pointer.

02/04/2025

S
55 R
~8 *21 a_

e Pointers A

-

N

Get Value of Thing Pointed by Pointers

To get the value of the thing pointed by the pointers, we use the * operator. For example:

int* pc, c:

c =5;

pc = &c;

printf("%d", *pc); // Output: 5

Here, the address of ¢ is assigned tothe pc pointer. To get the value stored in that

address, we used *pc .

02/04/2025

2 Pointers

ryronls

Note: In the above example, pc Isa pointer,not #pc . You cannot and should not do

something like *pc = & ;

By the way, * is called the dereference operator (when working with pointers). It

operates on a pointer and gives the value stored in that pointer.

02/04/2025

e

Pointers ~I

Changing Value Pointed by Pointers

Let's take an example.

LS pc, ¢

c =5

pc = &c;

c =1;

printf("%d", c); // Output: 1
printf("%d", *pc); // Ouptut: 1

We have assigned the address of ¢ tothe pc pointer.

Then, we changed the value of ¢ tol.Since pc andthe address of ¢ isthe same, *pc

gives us 1.

02/04/2025

R > G0
o= ﬁt% m {; s
%§;:§!2§§§ I:,":’)I 'ﬂill:‘E!!l.!E; T TITS

N

Let's take another example.

INES pc, c:

C.= 5

pc = &c;

*pc = 1;

printf("%d", *pc); // Ouptut: 1
printf("%d", c); // Output: 1

We have assigned the address of ¢ tothe pc pointer.

Then, we changed *pc tolusing *pc = 1; .Since pc and the address of ¢ isthe same,

¢ will be equal tol.

02/04/2025

L,

e Example: Working of Pointers O ! S

= Let's take a working example.

#include <stdio.h>
int main()

P Output

int* pc, <;

C'= 2i;"Add e Address of c: 2686784
printt(EE== GiiC e 2P ac) Value of c: 22

printf("Value of c: %d\n\n", c); 1) 22

pc = &c; Address of pointer pc: 2686784
prlntf("Addr‘eSS Of pOlnteF pC: %p\n", pC),' Content Of pointer pc: 22
printf("Content of pointer pc: %d\n\n", *pc); // 22

e = 11 Address of pointer pc: 2686784
printf("Address of pointer pc: %p\n", pc); Content of pointer pc: 11

printf("Content of pointer pc: %d\n\n", *pc); // 11
Address of c: 2686784

= = 2:
b Value of c: 2

printf("Address of c: %p\n", &c);
printf("Value of c: %d\n\n", c); // 2
return 0;

02/04/2025

e

Pointers ~I

Relationship Between Arrays and Pointers

An array is a block of sequential data. Let's write a program to print addresses of array

elements.

#include <stdio.h>
int main() {

int x[4];
int i; Output
for(i = 0; 1 < 4; ++1) {
printf("&x[%d] = %p\n", 1, &x[i]); &x[0] = 1450734448
¥ &x[1] = 1450734452
| &x[2] = 1450734456
printf("Address of array x: %p", X); &x[3] = 1450734460

Address of array x: 1450734448
return 0;

02/04/2025

~8 a_

@ Pointers 55

Notice that, the address of &x[0] and x is the same. It's because the variable name x

points to the first element of the array.

X x[0] x[1] x[2] x[3]

S

From the above example, it is clear that &x[0] is equivalentto x .And, x[0] is equivalent

to| *x .

Similarly,

&x[1] Isequivalentto x+1 and x[1] isequivalentto *(x+1) .

&x[2] Isequivalentto x+2 and x[2] Iisequivalentto *(x+2) .

Basically, &x[i] isequivalentto x+i and x[i] is equivalentto *(x+i) .

02/04/2025

e

Pointers ~I

Example 1: Pointers and Arrays

#include <stdio.h>

int main() {
int 1, x[6], sum = 0;
printf("Enter 6 numbers: ");
for(i = 0: 3 < 67 ++t1) {

When you run the program, the output will be:

Enter 6 numbers: 2

// Equivalent to scanf("%d", &x[1]); 3
scanf("%d", x+1); 4
- - - 4
// Equivalent to sum += x[1] 12
sum += *(x+1): 4
r Sum = 29
printf("Sum = %d", sum);
return 0O:

02/04/2025

Pointers

Example 2: Arrays and Pointers

#include <stdio.h>

int main() {
st xiE5] = £, 2. 3. A, S5k
int* ptr:

S o g S e TGS -l SSPEC il 2 B e g e L . 5 s
ptl 1S assigneda Lne address of the

ptr.: &x[2];

printf("*ptr = %d \n", *ptr); rf 3
printf("*(ptr+1) = %d \n", *(ptr+1));

printf("*(ptr-1) = %d", *(ptr-1)); //

return 0;

02/04/2025

-
J

~»

e

rorons

L,

a‘“ﬁ Pointers S1S

When you run the program, the output will be:

*ntr = 3
*(ptr+1) = 4
*(ptr-1) = 2

In this example, &x[2] , the address of the third element, is assigned to the ptr pointer.

Hence, 3 was displayed when we printed *

And, printing *(ptr+1) gives us the fourth element. Similarly, printing *(ptr-1) gives us the

second element.

02/04/2025

Pointer Arithmetic in C

rorons

WWe can perform arithmetic operations on the pointers like addition, subtraction, etc. However, as we know that pointer contains the
address, the result of an arithmetic operation performed on the pointer will also be a pointer if the other operand is of type integer.

Following arithmetic operations are possible on the pointer in C

o Increment
o Decrement
o Addition

o Subtraction

o Comparison

02/04/2025

oREA

DR : : o s, &
04 Pointer Arithmetic in C) =

Incrementing Pointer in C

If we increment a pointer by 1, the pointer will start pointing to the immediate next location. This is somewhat different from the general

arithmetic since the value of the pointer will get increased by the size of the data type to which the pointer is pointing.

We can traverse an array by using the increment operation on a pointer which will keep pointing to every element of the array, perform

some operation on that, and update itself in a loop.

The Rule to increment the pointer is given below:

new_address= current_address + i * size_of(data type)

Where i is the number by which the pointer get increased.

For 32-bit int variable, it will be incremented by 2 bytes.

For 64-bit int variable, it will be incremented by 4 bytes.

02/04/2025

e

Pointer Arithmetic in C O !

Let's see the example of incrementing pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+1;

printf("After increment: Address of p variable is %u \n",p); // in our case, p will get incremented by 4 bytes.

return O;

T Output

Address of p variable is 3214864300
After increment: Address of p variable is 3214864304

4

02/04/2025

e

Pointer Arithmetic in C O !

Traversing an array by using pointer

#include<stdio.h>

void main ()

c Output
intarris] =<1, 2, 3,4, 53;
it o printing array elements...
int i: 3 2 3 4 5
printf("printing array elements...\n"); p
for(i = 0; i< 5; i++)
{
printf("%d ", *(p+i));
b
by

02/04/2025

A/
~8 % }1 a_

o Pointer Arithmetic in C A

L=
/1 N\

Decrementing Pointer in C
Like increment, we can decrement a pointer variable. If we decrement a pointer, it will start pointing to the previous location, The formula
of decrementing the pointer is given below:
new_address= current_address - i * size_of(data type)

For 32-bit int variable, it will be decremented by 2 bytes.

For 64-bit int variable, it will be decremented by 4 bytes.

02/04/2025

r\f ™

DR : : o s, &
0,2 Pointer Arithmetic in C D =

Let's see the example of decrementing pointer variable on 64-bit OS.

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-1;

printf("After decrement: Address of p variable is %u \n",p); // P will now point to the immidiate previous location.

¥
Output

Address of p variable is 3214864300
After decrement: Address of p variable is 3214864296

4

02/04/2025

e

Pointer Arithmetic in C O !

C Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is given below:
new_address= current_address + (number * size_of(data type))

32-bit

For 32-bit int variable, it will add 2 * number.

64-bit

For 64-bit int variable, it will add 4 * nhumber.

02/04/2025

~EG
5

",
~8 21 a_

0,2 Pointer Arithmetic in C D =

Let's see the example of adding value to pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){ Qurpn

int number=50;
Address of p variable is 3214864300

int *p;//pointer to int
After adding 3: Address of p variable is 3214864312

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p); 4
p=p+3; //adding 3 to pointer variable

printf("After adding 3: Address of p variable is %u \n",p);

return O;

i

As you can see, the address of p is 3214864300. But after adding 3 with p variable, it is 3214864312, i.e., 4*3=12 increment,

02/04/2025

e

Pointer Arithmetic in C O !
C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. Subtracting any number from a pointer will give an address. The
formula of subtracting value from the pointer variable is given below:

new_address= current_address - (number * size_of(data type))
32-bit
For 32-bit int variable, it will subtract 2 * number.

64-bit

For 64-bit int variable, it will subtract 4 * number.

02/04/2025

e

Pointer Arithmetic in C O !

Let's see the example of subtracting value from the pointer variable on 64-bit architecture.

#include<stdio.h>
int main(){ Output
int number=50;

int *p;//pointer to int Address of p variable is 3214864300

p=&number;//stores the address of number variable After subtracting 3: Address of p variable is 3214864288
e I

printf("Address of p variable is %u \n",p); «

p=p-3; //subtracting 3 from pointer variable

printf("After subtracting 3: Address of p variable is %u \n",p);

return O;

¥

You can see after subtracting 3 from the pointer variable, it is 12 (4*3) less than the previous address value.

02/04/2025

o Pointers and Functions

N

In C programming, it Is also possible to pass addresses as arguments to functions.

To accept these addresses in the function definition, we can use pointers. It's because

pointers are used to store addresses. Let's take an example:

02/04/2025

e

7 5
& %, Example: Pass Addresses to Functions &

. 4 QJ I TIonS

#include <stdio.h>
void swap(int *nl1, int *n2);

int main()

{
int numl = 5, num2 = 10;
// address of numl and num2 1s passed
swap(&numl, &num2);
printf("numl = %d\n", numl);
printf("num2 = %d", num2);
return O;
¥
void SwabCInt™ Rl. int> n2) When you run the program, the output will be:
{
int temp;
temp = *n1; numl = 10
*n1 = *n2: num2 = 5
*n2 = temp;
¥

02/04/2025

L,

!2(>
_J-hijg HITYTIOTTS

02/04/2025

