SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING
[YEAR - I SEM

UNIT 5

TOPIC 1 - Structure Introduction

—

3

h—

LITTITITIONS

INTRODUCTION
LLTTITITIONS

We have seen that arrays can be used to represent a group of data items that belong
to the same type, such as int or float.

However, we cannot use an array if we want to represent a collection of data items
of different types using a single name.

Fortunately, C supports a constructed data type known as structures, a mechanism
for packing data of different types.

A structure 1s a convenient tool for handling a group of logically related data items.
For example, 1t can be used to represent a set of attributes, such as student name,
roll number and marks.

The concept of a structure 1s analogous to that of a ‘record’ in many other
languages.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

INTRODUCTION

" Examples of such structures are:
| time : seconds, minutes, hours
1 date : day, month, year
book : author, title, price, year
city : name, country, population
address : name, door-number, street, city
inventory : item, stock, value
| customer : name, telephone, city, category

LLTTITITION S

[l Structures help to organize complex data in a more meaningful way.
[l It is a powerful concept that we may often need to use 1n our program design.

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 2

DEFINING A STRUCTURE >
LLTTITI IO S

Unlike arrays, structures must be defined first for their format that may be used later

to declare structure variables.

[0 Let us use an example to illustrate the process of structure definition and the
creation of structure variables.

[Consider a book database consisting of book name, author, number of pages, and
price.

[l We can define a structure to hold this information as follows:

struct book bank

!

char title[20];

char author|[15];

int pages;

float price;

hE

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT /SNSCT .

1 [

DEFINING A STRUCTURE

LLTTITITIONS
The keyword struct declares a structure to hold the details of four data fields,

namely title, author, pages, and price.
These fields are called structure elements or members.

Each member may belong to a different type of data.

book bank 1s the name of the structure and 1s called the structure tag.

The tag name may be used subsequently to declare variables that have the tag’s
structure.

Note that the above definition has not declared any variables.

It ssmply describes a format called template to represent information as shown 1n
below Fig.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

DEFINING A STRUCTURE

CINS. TS
struct bOOk—bank title array of 20 characters
Char tit]e [2()] ; author array of 15 characters
.char author|15]; s R
Int pages;
float price; price float

hE

The general format of a structure definition is as follows:

struct tag name
{
data type memberl;
data type member?2;
¢

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT .

DEFINING A STRUCTURE

LLTTITITION S

[In defining a structure you may note the following syntax:

[0 1. The template 1s terminated with a semicolon.

[l 2. While the entire definition is considered as a statement, each member 1s declared
independently for its name and type 1n a separate statement inside the template.

[0 3. The tag name such as book bank can be used to declare structure variables of its
type, later in the program.

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

Arrays vs Structures

LLTTITITION S

[Both the arrays and structures are classified as structured data types as they provide
a mechanism that enable us to access and manipulate data 1n a relatively easy
manner.

[0 But they differ in a number of ways which are as follows:

[1. An array 1s a collection of related data elements of same type.

[IStructure can have elements of different types.

[l 2. An array is derived data type whereas a structure 1s a programmer-defined one.

[3. Any array behaves like a built-in data type. All we have to do is to declare an
array variable and use it.

[0 But in the case of a structure, first we have to design and declare a data structure
before the variables of that type are declared and used.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

DECLARING STRUCTURE VARIABLES

LLTTITITION S

[After defining a structure format we can declare variables of that type.

[l A structure variable declaration 1s similar to the declaration of variables of any other
data types.

[It includes the following elements:

1. The keyword struct.

2. The structure tag name.

3. List of variable names separated by commas.

4. A terminating semicolon.

For example, the statement

struct book bank, bookl, book2, book3;

declares book1, book2, and book3 as variables of type struct book bank.

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

DECLARING STRUCTURE VARIABLES ~»

LIS T TIONS

[1 Each one of these variables has four members as specified by the template.
[0 The complete declaration might look like this:

struct book bank

d

char title[20];

char author|[15];

int pages;

float price;

fs

struct book bank bookl, book2, book3;

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 0

DECLARING STRUCTURE VARIABLES ~»

LIS T TIONS

The declaration 1s valid.

struct book bank

d

char title[20];

char author[15];

int pages;

float price;

+ bookl, book2, book3;
[0 The use of tag name 1s optional here. For example:
struct

+ bookl, book2, book3;

[declares bookl1, book2, and book3 as structure variables representing three books, but does not
include a tag name

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT .

STRUCTURE INITIALIZATION

Like any other data type, a structure variable can be initialized at compile time.
main()

{

struct

d
int weight;
fl oat height;

)
student = {60, 180.75};

LLTTITITIONS

[0 This assigns the value 60 to student. weight and 180.75 to student. height.
[0 There is a one-to-one correspondence between the members and their initializing values.

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT -

STRUCTURE INITIALIZATION

A lot of variation 1s possible 1n initializing a structure.
The following statements initialize two structure variables.
Here, 1t 1s essential to use a tag name.

main()

{

struct st record
d
int weight;
fl oat height;
s
struct st record studentl = { 60, 180.75 };
struct st record student2 = { 53, 170.60 };

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 3

STRUCTURE INITIALIZATION
" /]

Another method 1s to 1nitialize a structure variable outside the function as shown below:
struct st record
{
int weight;
fl oat height;
+ studentl = {60, 180.75};
main()

{

struct st record student2 = {53, 170.60};

I IO S

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT "

RULES FOR INITIALIZING STRUCTURES

. . . e e.e ge s . LLTTITITIONS
There are a few rules to keep in mind while 1nitializing structure variables at

compile-time which are as follows:
[1. We cannot 1nitialize individual members inside the structure template.
[0 2. The order of values enclosed in braces must match the order of members in the

structure definition.
[3. It 1s permitted to have a partial initialization.
[l We can 1nitialize only the first few members and leave the remaining blank.
[l The uninitialized members should be only at the end of the list.
[4. The uninitialized members will be assigned default values as follows:
[l Zero for integer and fl oating point numbers.
0 “\O’ for characters and strings.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

*“f Two variables of the same structure type can be copied the same way as ordinary

1/03/2025

LLTTITI IO S

variables.
If personl and person2 belong to the same structure, then the following statements
are valid:
[personl = person2;
[l person2 = personl;
However, the statements such as
[personl == person2
[personl !=person2
are not permitted.
C does not permit any logical operations on structure variables.
In case, we need to compare them, we may do so by comparing members
individually.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT r

1/03/2025

COPYING A

Program
struct class

—-—

int number;
char name[20];
float marks;

)3
main()
{
int x;
struct class studentl = {111,"Rao",72.50};
struct class student2 = {222,"Reddy*, 67.00};
struct class student3;
student3 = studentZ;
x = ((student3.number == student2.number) &&
(student3.marks == studentZ.marks)) ? 1 : 0;
if(x == 1)

{
printf(*\nstudent? and student3 are same\n\n");
printf(*sd %s $f\n*, student3.number,
student3.name,
student3.marks);
}

else
printf("\nstudent?2 and student3 are different\n\n");

Output
studentZ? and student3 are same

222 Reddy 67.000000

. VARIABLES

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

~> L

INSTIOTD)

17

15

Ways to Access Members

LLTTITITION S

We have used the dot operator to access the members of structure variables.
[In fact, there are two other ways.
[0 Consider the following structure:
typedef struct
{.
Int X;
int y;
+ VECTOR;
VECTOR v, *ptr;
ptr=& v;
[l The identifier ptr is known as pointer that has been assigned the address of the structure
variable n.
[l Now, the members can be accessed in the following three ways:
1. using dot notation : v.x
2. using indirection notation : (*ptr).x
3. using selection notation : ptr = x

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 13

ARRAYS OF STRUCTURES

LLTTITITION S

We use structures to describe the format of a number of related variables.
For example, 1in analyzing the marks obtained by a class of students, we may use a
template to describe student name and marks obtained 1n various subjects and then
declare all the students as structure variables.
[In such cases, we may declare an array of structures, each element of the array
representing a structure variable.
[For example:
struct class student[100];
[l defines an array called student, that consists of 100 elements.
[l Each element is defined to be of the type struct class.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

ARRAYS OF STRUCTURES

struct marks

d

int subjectl;
int subject?;
int subject3;

s
main()

d

struct marks student[3] =
1445,68,81}, {75,53,69}, {57,36,71}};
[l This declares the student as an array of three elements student[0], student[1], and student[2]
and 1nitializes their members as follows:
student[O].subject] = 45;
student[0].subject2 = 635;

student[2].subject3 = 71;

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 50

1/03/2025

ARRAYS OF STRUCTURES D'’'S
ITTrorion’s
student [0].subject 1 45
.subject 2 68
.subject 3 81
student [1].subject 1 75
.subject 2 53
.subject 3 69
student [2].subject 1 o7
.subject 2 36
subject 3 71

The array student inside memory

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT)

ARRAYS WITHIN STRUCTURES

C permits the use of arrays as structure members.
We have already used arrays of characters inside a structure.
Similarly, we can use single-dimensional or multi-dimensional arrays of type int or float.
For example, the following structure declaration is valid:
struct marks
d
int number;
float subject[3];
}+ student[2];
Here, the member subject contains three elements, subject[0], subject[1], and subject|2].
These elements can be accessed using appropriate subscripts.
For example, the name student|[1].subject[2];
would refer to the marks obtained 1n the third subject by the second student

LLTTITI IO S

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 5

1/03/2025

STRUCTURES WITHIN STRUCTURES

Structures within a structure means nesting of structures.
Nesting of structures 1s permitted in C.
Let us consider the following structure defined to store information about the salary of
employees:
struct salary
{
char name;
char department;
int basic pay;
int dearness_allowance;
int house rent allowance;
int city allowance;

j

employee;

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

23

STRUCTURES WITHIN STRUCTURES
INSTIONE,

[0 This structure defi nes name, department, basic pay and three kinds of allowances. We can
group all the
[l items related to allowance together and declare them under a substructure as shown
below:
struct salary
d
char name;
char department;
struct
d
int dearness;
int house rent;
int city;
h

j

mpl :
o S Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 24

STRUCTURES AND FUNCTIONS

LLTTITITION S

[l We know that the main philosophy of C language 1s the use of functions.

[0 And therefore, it 1s natural that C supports the passing of structure values as
arguments to functions.

[0 There are three methods by which the values of a structure can be transferred
from one function to another.

[0 1. The first method 1s to pass each member of the structure as an actual
argument of the function call.

[l The actual arguments are then treated independently like ordinary variables.

[0 This 1s the most elementary method and becomes unmanageable and inefficient
when the structure size 1s large.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

]

]

-

STRUCTURES AND FUNCTIONS

. . . LLTTITITIONS
2. The second method 1nvolves passing of a copy of the entire structure to the called

function.

Since the function 1s working on a copy of the structure, any changes to structure
members within the function are not reflected in the original structure (in the calling
function).

It 1s, therefore, necessary for the function to return the entire structure back to the calling
function.

All compilers may not support this method of passing the entire structure as a
parameter.

3. The third approach employs a concept called pointers to pass the structure as an
argument.

In this case, the address location of the structure 1s passed to the called function.
The function can access indirectly the entire structure and work on 1it.

This 1s similar to the way arrays are passed to function.

This method 1s more efficient as compared to the second one

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

1/03/2025

STRUCTURES AND FUNCTIONS »

. .4 .-7///& s
U The general format of sending a copy of a structure to the called function 1s:

function_name (structure variable name);

[l The called function takes the following form:
data type function name(struct type st name)

return(expression);

j

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT -

UNIONS AND STRUCTURES >
LLTTITI IO S

[Unions are a concept borrowed from structures and therefore follow the same syntax as
structures.

[0 However, there 1s major distinction between them in terms of storage.

[l In structures, each member has its own storage location, whereas all the members of a
union use the same location.

[0 This implies that, although a union may contain many members of different types, it can
handle only one member at a time.

[Like structures, a union can be declared using the keyword union as follows:

union item

d

int m;
float x;
char c;
} code;
[l This declares a variable code of type union item.

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 5

1/03/2025

UNIONS AND STRUCTURES

LLTTITI IO S

The union contains three members, each with a different data type.

However, we can use only one of them at a time.

This 1s due to the fact that only one location 1s allocated for a union variable, irrespective
of 1ts size.

The compiler allocates a piece of storage that is large enough to hold the largest variable
type 1n the union.

In the declaration above, the member x requires 4 bytes which is the largest among the
members.

To access a union member, we can use the same syntax that we use for structure members.

That 1s,
CO(Q
CO(Q

C.1M
C.X

CO(Q

C.C

are all valid member variables.

For example, the statements such as
code.m = 379;
code.x = 7852.36:

ructure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 2

printf(*“%d”, code.m);

SIZE OF STRUCTURES
LLTTITITION S

We normally use structures, unions, and arrays to create variables of large sizes.
The actual size of these variables 1n terms of bytes may change from machine to
machine.

We may use the unary operator sizeof to tell us the size of a structure (or any
variable).

The expression sizeof(struct x) will evaluate the number of bytes required to
hold all the members of the structure x.

If y 1s a simple structure variable of type struct x, then the expression sizeoi(y)
would also give the same answer.

However, 1f y 1s an array variable of type struct x, then sizeof(y) would give the
total number of bytes the array y requires.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT 30/30

