

1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING
I YEAR - II SEM

 UNIT 5

 TOPIC 1 – Structure Introduction

1/03/2025 Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT

22

INTRODUCTION
� We have seen that arrays can be used to represent a group of data items that belong

to the same type, such as int or float.
� However, we cannot use an array if we want to represent a collection of data items

of different types using a single name.
� Fortunately, C supports a constructed data type known as structures, a mechanism

for packing data of different types.
� A structure is a convenient tool for handling a group of logically related data items.
� For example, it can be used to represent a set of attributes, such as student_name,

roll_number and marks.
� The concept of a structure is analogous to that of a ‘record’ in many other

languages.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

33

INTRODUCTION
� Examples of such structures are:
� time : seconds, minutes, hours
� date : day, month, year
� book : author, title, price, year
� city : name, country, population
� address : name, door-number, street, city
� inventory : item, stock, value
� customer : name, telephone, city, category

� Structures help to organize complex data in a more meaningful way.
� It is a powerful concept that we may often need to use in our program design.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

44

DEFINING A STRUCTURE
� Unlike arrays, structures must be defined first for their format that may be used later

to declare structure variables.
� Let us use an example to illustrate the process of structure definition and the

creation of structure variables.
� Consider a book database consisting of book name, author, number of pages, and

price.
� We can define a structure to hold this information as follows:

 struct book_bank
 {
 char title[20];
 char author[15];
 int pages;
 float price;
 };

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

55

DEFINING A STRUCTURE
� The keyword struct declares a structure to hold the details of four data fields,

namely title, author, pages, and price.
� These fields are called structure elements or members.
� Each member may belong to a different type of data.
� book_bank is the name of the structure and is called the structure tag.
� The tag name may be used subsequently to declare variables that have the tag’s

structure.
� Note that the above definition has not declared any variables.
� It simply describes a format called template to represent information as shown in

below Fig.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

66

DEFINING A STRUCTURE

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

struct book_bank
 {
 char title[20];
 char author[15];
 int pages;
 float price;
 };

77

DEFINING A STRUCTURE

� In defining a structure you may note the following syntax:

� 1. The template is terminated with a semicolon.

� 2. While the entire definition is considered as a statement, each member is declared
independently for its name and type in a separate statement inside the template.

� 3. The tag name such as book_bank can be used to declare structure variables of its
type, later in the program.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

88

Arrays vs Structures

� Both the arrays and structures are classified as structured data types as they provide
a mechanism that enable us to access and manipulate data in a relatively easy
manner.

� But they differ in a number of ways which are as follows:
� 1. An array is a collection of related data elements of same type.

�Structure can have elements of different types.
� 2. An array is derived data type whereas a structure is a programmer-defined one.
� 3. Any array behaves like a built-in data type. All we have to do is to declare an

array variable and use it.

� But in the case of a structure, first we have to design and declare a data structure
before the variables of that type are declared and used.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

99

DECLARING STRUCTURE VARIABLES

� After defining a structure format we can declare variables of that type.
� A structure variable declaration is similar to the declaration of variables of any other

data types.
� It includes the following elements:
�1. The keyword struct.
�2. The structure tag name.
�3. List of variable names separated by commas.
�4. A terminating semicolon.

� For example, the statement
� struct book_bank, book1, book2, book3;
� declares book1, book2, and book3 as variables of type struct book_bank.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1010

DECLARING STRUCTURE VARIABLES

� Each one of these variables has four members as specified by the template.
� The complete declaration might look like this:

 struct book_bank
 {
 char title[20];
 char author[15];
 int pages;
 float price;
 };
 struct book_bank book1, book2, book3;

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1111

DECLARING STRUCTURE VARIABLES
� The declaration is valid.

 struct book_bank
 {
 char title[20];
 char author[15];
 int pages;
 float price;
 } book1, book2, book3;

� The use of tag name is optional here. For example:
 struct
 {

 } book1, book2, book3;

� declares book1, book2, and book3 as structure variables representing three books, but does not
include a tag name

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1212

STRUCTURE INITIALIZATION
� Like any other data type, a structure variable can be initialized at compile time.

 main()
 {
 struct
 {
 int weight;
 fl oat height;

 }
 student = {60, 180.75};

 }

� This assigns the value 60 to student. weight and 180.75 to student. height.
� There is a one-to-one correspondence between the members and their initializing values.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1313

STRUCTURE INITIALIZATION
� A lot of variation is possible in initializing a structure.
� The following statements initialize two structure variables.
� Here, it is essential to use a tag name.

 main()
 {
 struct st_record

 {
 int weight;
 fl oat height;

 };
 struct st_record student1 = { 60, 180.75 };
 struct st_record student2 = { 53, 170.60 };

 }

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1414

STRUCTURE INITIALIZATION
� Another method is to initialize a structure variable outside the function as shown below:

 struct st_record
 {
 int weight;
 fl oat height;
 } student1 = {60, 180.75};
 main()
 {
 struct st_record student2 = {53, 170.60};

 }

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1515

RULES FOR INITIALIZING STRUCTURES
� There are a few rules to keep in mind while initializing structure variables at

compile-time which are as follows:
� 1. We cannot initialize individual members inside the structure template.
� 2. The order of values enclosed in braces must match the order of members in the

structure definition.
� 3. It is permitted to have a partial initialization.
�We can initialize only the first few members and leave the remaining blank.
�The uninitialized members should be only at the end of the list.

� 4. The uninitialized members will be assigned default values as follows:
� Zero for integer and fl oating point numbers.
� ‘\0’ for characters and strings.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1616

COPYING AND COMPARING STRUCTURE VARIABLES
� Two variables of the same structure type can be copied the same way as ordinary

variables.
� If person1 and person2 belong to the same structure, then the following statements

are valid:
� person1 = person2;
� person2 = person1;

� However, the statements such as
� person1 == person2
� person1 != person2

� are not permitted.
� C does not permit any logical operations on structure variables.
� In case, we need to compare them, we may do so by comparing members

individually.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1717

COPYING AND COMPARING STRUCTURE VARIABLES

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1818

Ways to Access Members
� We have used the dot operator to access the members of structure variables.
� In fact, there are two other ways.
� Consider the following structure:

 typedef struct
 {
 int x;

 int y;
 } VECTOR;
 VECTOR v, *ptr;
 ptr = & v;

� The identifier ptr is known as pointer that has been assigned the address of the structure
variable n.

� Now, the members can be accessed in the following three ways:
� 1. using dot notation : v.x
� 2. using indirection notation : (*ptr).x
� 3. using selection notation : ptr –> x

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

1919

ARRAYS OF STRUCTURES
� We use structures to describe the format of a number of related variables.
� For example, in analyzing the marks obtained by a class of students, we may use a

template to describe student name and marks obtained in various subjects and then
declare all the students as structure variables.

� In such cases, we may declare an array of structures, each element of the array
representing a structure variable.

� For example:
�struct class student[100];

� defines an array called student, that consists of 100 elements.
� Each element is defined to be of the type struct class.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2020

ARRAYS OF STRUCTURES
struct marks
 {
 int subject1;
 int subject2;

int subject3;
 };
 main()
 {
 struct marks student[3] =
 {{45,68,81}, {75,53,69}, {57,36,71}};

� This declares the student as an array of three elements student[0], student[1], and student[2]
and initializes their members as follows:

 student[0].subject1 = 45;
 student[0].subject2 = 65;

 student[2].subject3 = 71;

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2121

ARRAYS OF STRUCTURES

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2222

ARRAYS WITHIN STRUCTURES
� C permits the use of arrays as structure members.
� We have already used arrays of characters inside a structure.
� Similarly, we can use single-dimensional or multi-dimensional arrays of type int or float.
� For example, the following structure declaration is valid:

 struct marks
 {
 int number;
 float subject[3];
 } student[2];

� Here, the member subject contains three elements, subject[0], subject[1], and subject[2].
� These elements can be accessed using appropriate subscripts.
� For example, the name student[1].subject[2];
� would refer to the marks obtained in the third subject by the second student

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2323

STRUCTURES WITHIN STRUCTURES
� Structures within a structure means nesting of structures.
� Nesting of structures is permitted in C.
� Let us consider the following structure defined to store information about the salary of

employees:
 struct salary
 {

 char name;
 char department;
 int basic_pay;
 int dearness_allowance;
 int house_rent_allowance;
 int city_allowance;

 }
 employee;

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2424

STRUCTURES WITHIN STRUCTURES
� This structure defi nes name, department, basic pay and three kinds of allowances. We can

group all the
� items related to allowance together and declare them under a substructure as shown

below:
 struct salary
 {
 char name;

 char department;
 struct
 {
 int dearness;

 int house_rent;
 int city;

 }
 allowance;

 }
 employee;

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2525

STRUCTURES AND FUNCTIONS

� We know that the main philosophy of C language is the use of functions.
� And therefore, it is natural that C supports the passing of structure values as

arguments to functions.
� There are three methods by which the values of a structure can be transferred

from one function to another.
� 1. The first method is to pass each member of the structure as an actual

argument of the function call.
� The actual arguments are then treated independently like ordinary variables.
� This is the most elementary method and becomes unmanageable and inefficient

when the structure size is large.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2626

STRUCTURES AND FUNCTIONS
� 2. The second method involves passing of a copy of the entire structure to the called

function.
� Since the function is working on a copy of the structure, any changes to structure

members within the function are not reflected in the original structure (in the calling
function).

� It is, therefore, necessary for the function to return the entire structure back to the calling
function.

� All compilers may not support this method of passing the entire structure as a
parameter.

� 3. The third approach employs a concept called pointers to pass the structure as an
argument.

� In this case, the address location of the structure is passed to the called function.
� The function can access indirectly the entire structure and work on it.
� This is similar to the way arrays are passed to function.
� This method is more efficient as compared to the second one

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2727

STRUCTURES AND FUNCTIONS
� The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name);

� The called function takes the following form:
 data_type function_name(struct_type st_name)
 {

 return(expression);
 }

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2828

UNIONS AND STRUCTURES
� Unions are a concept borrowed from structures and therefore follow the same syntax as

structures.
� However, there is major distinction between them in terms of storage.
� In structures, each member has its own storage location, whereas all the members of a

union use the same location.
� This implies that, although a union may contain many members of different types, it can

handle only one member at a time.
� Like structures, a union can be declared using the keyword union as follows:

 union item
{
 int m;

 float x;
 char c;
 } code;

� This declares a variable code of type union item.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

2929

UNIONS AND STRUCTURES
� The union contains three members, each with a different data type.
� However, we can use only one of them at a time.
� This is due to the fact that only one location is allocated for a union variable, irrespective

of its size.
� The compiler allocates a piece of storage that is large enough to hold the largest variable

type in the union.
� In the declaration above, the member x requires 4 bytes which is the largest among the

members.
� To access a union member, we can use the same syntax that we use for structure members.
� That is,

 code.m
 code.x
 code.c

� are all valid member variables.
� For example, the statements such as

 code.m = 379;
 code.x = 7859.36;
 printf(“%d”, code.m);

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

303030/30

SIZE OF STRUCTURES
� We normally use structures, unions, and arrays to create variables of large sizes.
� The actual size of these variables in terms of bytes may change from machine to

machine.
� We may use the unary operator sizeof to tell us the size of a structure (or any

variable).
� The expression sizeof(struct x) will evaluate the number of bytes required to

hold all the members of the structure x.
� If y is a simple structure variable of type struct x, then the expression sizeof(y)

would also give the same answer.
� However, if y is an array variable of type struct x, then sizeof(y) would give the

total number of bytes the array y requires.

Structure Introduction/ Prog. For Prob.Solving / Thilagarani P/IT/SNSCT1/03/2025

