

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23EET104 / ANALOG ELECTRONICS CIRCUITS I YEAR / II SEMESTER

JNIT-IV: DIFFERENTIAL AMPLIFIER AND MULTIVIBRATOR

DIFFERENTIAL AMPLIFIER

Transistor operation - Recall

Introduction

- The function of differential amplifier is to amplify the difference of two signals.
- The need for differential amplifier in many physical measurements arises where response from d.c to many megahertz is required. It is also the basic input stage of an integrated amplifier;

Block diagram of differential amplifier

Circuit Diagram of Differential Amplifier

P X

Operation

 The output signal in a differential amplifier is proportional to the difference between the two input signals.

$$V_0 \alpha (V_1 - V_2)$$

Where,

 $V_1 & V_2$ – Two input signals

 V_o – Single ended output

Differential mode Gain

Differential Gain (Ad):

$$V_o = A_d (V_1 - V_2)$$

Where, A_d is the constant of proportionality.

 A_d is the gain with which differential amplifier amplifies the difference of two input signals.

Hence it is known as 'differential gain of the differential amplifier'.

$$A_d = \frac{V_o}{V_d} = -g_{\rm m}R_{\rm C}$$

V1-V2= Difference of two voltage

Common mode Gain

Common Mode Gain (Ad):

An average of the two input signals is called common mode signal denoted as V_c . $V_c = \frac{V_1 + V_2}{V_c}$

Hence, the differential amplifier also produces the output voltage proportional to common mode signals.

$$V_0 = A_c V_c$$

Where $A_c = -R_c / R_E$, is the common mode gain.

Therefore, there exists some finite output for $V_1 = V_2$ due to common mode gain Ac.

Hence the total output of any differential amplifier can be given as,

$$V_0 = A_d V_d + A_c V_c$$

CMRR

Common Mode Rejection Ratio (CMRR):

- The ability of a differential amplifier to reject a common mode signal is defined by a ratio called 'Common Mode Rejection Ratio' denoted as CMRR.
- CMRR is defined as the ratio of the differential voltage gain A_d to common mode gain A_c and is expresses in dB.

$$CMRR = Ad/Ac = {}^{g}_{m}R_{E}$$

$$CMRR = 20 \log \left| \frac{A_d}{A_c} \right| dB$$

Advantages & Applications

- Differential amplifiers are pervasive in analog electronics
 - Low frequency amplifiers
 - High frequency amplifiers
 - Operational amplifiers the first stage is a differential amplifier
 - Analog modulators
 - Logic gates
- Advantages
 - Large input resistance
 - High gain
 - Differential input
 - Good bias stability
 - Excellent device parameter tracking in IC implementation
- Examples
 - Bipolar 741 op-amp (mature, well-practiced, cheap)
 - CMOS or BiCMOS op-amp designs (more recent, popular)

RECAP....

...THANK YOU

