

# SNS COLLEGE OF TECHNOLOGY

**Coimbatore-35 An Autonomous Institution** 

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# **DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 23AMB201 - MACHINE LEARNING**

**II YEAR IV SEM** 

**UNIT II – SUPERVISED LEARNING ALGORITHM** 

**TOPIC 1 – Bias and variance Overfitting Underfitting** 

Redesigning Common Mind & Business Towards Excellence











Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork



**Regression problem:** Underfitting, overfitting, best fitting

- **Underfitting:** A model or a ML algorithm is said to have underfitting when it cannot capture the underlying trend of the data.
- \_2\_ Overfitting: A model or a ML algorithm is said to have overfitting when it capture the
- underlying trend of the data very accurately. 3
  - **Best fit:** A model or a ML algorithm is said to have best fit when it capture the underlying trend of the data moderately.







### **Bias:** It shows the degree of randomness of the training data.

- Based on the training data a suitable model may be created for the regression (a) or classification problem.
- **Regression:** Linear, logistic, polynomial (b)

### (c) Classification: Decision tree, random forest, naive baye's, KNN, SVM Variance: It shows the degree of randomness of the testing data. Testing data validates the accuracy of a model, that has been made with the **(i)**

- help of training data set.
- (ii) Testing data is nothing but the unlabeled or unknown data.





# Underfitting, overfitting, best fit and bias, variance



### Note:

- $\Rightarrow$  The objective of ML algorithm not only fit for the training data but also fit for the testing data.
- In other words, low bias and low variance is the appropriate solution.  $\Rightarrow$

| Underfitting  | Overfitting   |   |
|---------------|---------------|---|
| High bias     | Very low bias | L |
| High variance | High variance | L |



### Best fit

ow bias

ow variance

A classifier (Decision tree, random forest, naive baye's, KNN, SVM) works on two types of data

- Training data Testing
- data

### **Example:**

Classifier comes under the category of underfitting, overfitting, and best fit based on its training and testing accuracy.

| Underfitting    | Overfitting     |
|-----------------|-----------------|
| Train error=25% | Train error=1%  |
| Test error= 27% | Test error= 23% |



### Best fit Train error=8% Testerror=9%



# Mathematical intuition



bias 
$$\hat{f}(x) = E[\hat{f}(x)] - f(x)$$
 (  
variance  $\hat{f}(x) = E^{h} \hat{f}(x) - E[\hat{f}(x)]^{2^{i}}$  (2)

- $\Rightarrow \hat{f}(x) \rightarrow \text{output observed through the training model}$
- ⇒ For linear model  $\hat{f}(x) = w_1 x + w_0$ ⇒ For complex model  $\hat{f}(x) = \sum_{i=1}^{D} w_i x^i + w_0$
- $\Rightarrow$  We don't have idea regarding the true f(x).
- ⇒ Simple model: Low bias & high variance
- ⇒ Complex model: High bias & low variance

 $E[(y - f(x))^2] = bias^2 + Variance + \sigma^2 (Inreducible error)$ 



# 1) 2)

(3)



## and variance trade-off relation











- E. Alpaydin, Introduction to machine learning. MIT press, 2020.
- J. Grus, Data science from scratch: first principles with python. O'Reilly Media, 2019.
- T. M. Mitchell, *The discipline of machine learning*. Carnegie Mellon University, School of Computer Science, Machine Learning, 2006, vol. 9.
- 1. https://www.youtube.com/watch?v=iNmtkaeGxLg https://www.analyticsvidhya.com/blog/2021/05/all-you-need-to-know-about-your-firstmachine-learning-model-linear-regression/
- 2. <a href="https://www.geeksforgeeks.org/linear-regression-python-implementation/?ref=lbp">https://www.geeksforgeeks.org/linear-regression-python-implementation/?ref=lbp</a>



