

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 23AMB201 - MACHINE LEARNING

II YEAR IV SEM

UNIT IV – UNSUPERVISED LEARNING ALGORITHM

TOPIC 5 – Dimensionality Reduction

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

Curse of dimensionality

The "curse of dimensionality" refers to the challenges that arise when analyzing and modeling data with a large number of features (dimensions) in high-dimensional spaces.

. The amount of training data needed to cover 20% of the feature range grows exponentially with the number of dimensions.

Dimensionality reduction algorithms represent techniques that reduce the number of features (not samples) in a dataset.

Methods are commonly divided into:

- 1. Feature Selection find a subset of the input features
- 2. Feature Projection (or Feature Extraction) — find the optimal projection of the original data into some low-dimensional space

Techniques used:

1. Filter Set of all features \rightarrow Selecting the best subset \rightarrow Learning algorithm \rightarrow Performance

2. Wrapper

Set of all features \rightarrow Consider subset of all features \rightarrow Learning algorithm \rightarrow Performance

Selecting the best subset

3. Embedded Set of all features \rightarrow Consider subset of all features \rightarrow Learning algorithm + Performance

Selecting the best subset

Applications of DM

Original PNG - 12 MB

Compressed JPEG - 2.5 MB

- 1. Linear Discriminant Analysis
- 2. Factor Analysis
- **3. Principal Components Analysis**
- 4. Independent Components Analysis

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, —Learning from Data, AML Book Publishers, 2012. P. Flach, —Machine Learning: The art and science of algorithms that make sense of data^I, Cambridge University Press, 2012. https://www.analyticsvidhya.com/blog/2022/07/principalcomponent-analysis-beginner-friendly/

