

SNS COLLEGE OF TECHNOLOGY

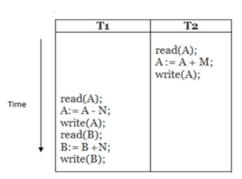
SIS INSTITUTIONS


(An Autonomous Institution)
Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with 'A++' Grade (Cycle III) &
Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)
COIMBATORE-641 035, TAMIL NADU

UNIT IV - Transaction

Transaction Concepts – ACID Properties – **Schedules** – Serializability – Concurrency Control – Need for Concurrency – Locking Protocols – Two Phase Locking – Deadlock – Transaction Recovery – Save Points – Isolation Levels – SQL Facilities for Concurrency and Recovery.

Schedules


A series of operation from one transaction to another transaction is known as **schedule.** It is used to preserve the order of the operation in each of the individual transaction.

Serial Schedule

The serial schedule is a type of schedule where one transaction is executed completely before starting another transaction. In the serial schedule, when the first transaction completes its cycle, then the next transaction is executed.

	T ₁	T2
Time	read(A); A:= A - N; write(A); read(B); B:= B + N; write(B);	
		read(A); A:= A + M; write(A);

For example: Suppose there are two transactions T1 and T2 which have some operations. If it has no interleaving of operations, then there are the following two possible outcomes:

- Execute all the operations of T1 which was followed by all the operations of T2.
- Execute all the operations of T1 which was followed by all the operations of T2.
- In the given (a) figure, Schedule A shows the serial schedule where T1 followed by T2.
- In the given (b) figure, Schedule B shows the serial schedule where T2 followed by T1.

Non Serial Schedule

- If interleaving of operations is allowed, then there will be non-serial schedule.
- It contains many possible orders in which the system can execute the individual operations of the transactions.
- In the given figure (c) and (d), Schedule C and Schedule D are the non-serial schedules. It has interleaving of operations.

	T ₁	T2		T ₁	T ₂
Time	read(A); A:= A - N; write(A); read(B); B:= B + N; write(B);	read(A); A:= A + M; write(A);	Time	read(A); A:= A - N; write(A); read(B); B:= B + N;	read(A); A:= A + M write(A);
.	write(b),		J +	write(B);	

Serializable schedule

- The serializability of schedules is used to find non-serial schedules that allow the transaction to execute concurrently without interfering with one another.
- It identifies which schedules are correct when executions of the transaction have interleaving of their operations.
- A non-serial schedule will be serializable if its result is equal to the result of its transactions executed serially.