
Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 4 Page 1 of 6

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT IV - Transaction

Transaction Concepts – ACID Properties – Schedules – Serializability – Concurrency

Control – Need for Concurrency – Locking Protocols – Two Phase Locking – Deadlock –

Transaction Recovery – Save Points – Isolation Levels – SQL Facilities for Concurrency and

Recovery.

Serializability

What is Serializability?

Serializability of schedules ensures that a non-serial schedule is equivalent to a serial

schedule. It helps in maintaining the transactions to execute simultaneously without

interleaving one another. In simple words, serializability is a way to check if the execution

of two or more transactions are maintaining the database consistency or not.

Schedules and Serializable Schedules

Schedules in DBMS are a series of operations performing one transaction to the other.

R(X) means Reading the value: X; and W(X) means Writing the value: X.

A non-serial schedule is called a serializable schedule if it can be converted to its

equivalent serial schedule. In simple words, if a non-serial schedule and a serial schedule

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 4 Page 2 of 6

result in the same then the non-serial schedule is called a serializable schedule.

Testing of Serializability

To test the serializability of a schedule, we can use Serialization Graph or Precedence

Graph. A serialization Graph is nothing but a Directed Graph of the entire transactions of

a schedule.

It can be defined as a Graph G(V, E) consisting of a set of directed-edges E = {E1, E2, E3, ...,

En} and a set of vertices V = {V1, V2, V3, ...,Vn}. The set of edges contains one of the two

operations - READ, WRITE performed by a certain transaction.

Ti -> Tj, means Transaction-Ti is either performing read or write before the transaction-Tj.

What is a conflicting pair in transactions?

Two operations inside a schedule are called conflicting if they meet these three

conditions:

1. They belong to two different transactions.

2. They are working on the same data piece.

3. One of them is performing the WRITE operation.

To conclude, let’s take two operations on data: "a". The conflicting pairs are:

1. READ(a) - WRITE(a)

2. WRITE(a) - WRITE(a)

3. WRITE(a) - READ(a)

Example:

schedule "S" having three transactions t1, t2, and t3 working simultaneously, to get a

better understanding.

t1 t2 t3
R(x)

 R(z)
 W(z)
 R(y)

R(y)

 W(y)
 W(x)
 W(z)

W(x)

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 4 Page 3 of 6

Non-serializable schedule - R(x) of T1 conflicts with W(x) of T3, so there is a directed

edge from T1 to T3. R(y) of T1 conflicts with W(y) of T2, so there is a directed edge from

T1 to T2. W(y\x) of T3 conflicts with W(x) of T1, so there is a directed edge from T3 to T.

Similarly, we will make edges for every conflicting pair. Now, as the cycle is formed, the

transactions cannot be serializable.

Types of Serializability

Serializability of any non-serial schedule can be verified using two types mainly: Conflict

Serializability and View Serializability.

One more way to check serializability is by forming an equivalent serial schedule that

results in the same as the original non-serial schedule. Since this process only focuses on

the output rather than the operations taking place in between the switching of

transactions, it is not practically used. Now let's discuss Conflict and View Serializability

in detail.

Conflict Serializability and Conflict Serializable Schedules

A non-serial schedule is a conflict serializable if, after performing some swapping on the

non-conflicting operation results in a serial schedule. It is checked using the non-serial

schedule and an equivalent serial schedule. This process of checking is called Conflict

Serializability in DBMS.

It is tedious to use if we have many operations and transactions as it requires a lot of

swapping.

For checking, we will use the same Precedence Graph technique discussed above. First,

we will check conflicting pairs operations(read-write, write-read, and write-write) and

then form directed edges between those conflicting pair transactions. If we can find a loop

in the graph, then the schedule is non-conflicting serializable otherwise it is surely a

conflicting serializable schedule.

Example:

Schedule "S" having three transactions t1, t2, and t3 working simultaneously. Let's form

is precedence graph.

t1 t2 t3

R(x)

 R(y)

 R(y)

 W(y)

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 4 Page 4 of 6

t1 t2 t3

W(x)

 W(x)

 R(x)

 W(x)

As there is no loop in the graph(the graph is DAG), it is a conflict serializable schedule as

well as a serial schedule. Since it is a serial schedule, we can detect the order of

transactions as well.

The order of the Transactions: t1 will execute first as there is no incoming edge on T1.

t3 will execute second as it depends on T1 only. t2 will execute at last as it depends on

both T1 and T3.

So, order of its equivalent serial schedule is: t1 --> t3 --> t2

View Serializability and View Serializable Schedules

If a non-serial schedule is view equivalent to some other serial schedule then the

schedule is called View Serializable Schedule. It is needed to ensure the consistency of a

schedule.

What is view equivalency?

The two conditions needed by schedules(S1 and S2) to be view equivalent are:

1. Initial read must be on the same piece of data.

Example: If transaction t1 is reading "A" from database in schedule S1, then in

schedule S2, t1 must read A.

2. Final write must be on the same piece of data.

Example: If a transaction t1 updated A at last in S1, then in S2, t1 should perform

final write as well.

3. The mid sequence should also be in the same order.

Example: If t1 is reading A which is updated by t2 in S1, then in S2, t1 should read

A which should be updated by t2.

This process of checking view equivalency of a schedule is called View

Serializability.

Example: Schedule "S" having two transactions t1, and t2 working simultaneously.

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 4 Page 5 of 6

t1 t2

R(x)

W(x)

 R(x)

 W(x)

R(y)

W(y)

 R(y)

 W(y)

Let's form its view equivalent schedule (S') by interchanging mid-read-write operations

of both the transactions. S':

t1 t2

R(x)

W(x)

R(y)

W(y)

 R(x)

 W(x)

 R(y)

 W(y)

Since a view equivalent schedule is possible, it is a view serializable schedule.

NOTE:

A conflict serializable schedule is always viewed as serializable, but vice versa is not

always true.

Actual process for checking view serializability

1. First, check for conflict serializability.

2. Check for a blind write. If there is a blind write, then the schedule can be view

serializable. So, check its view serializability using the view equivalent schedule

technique (stated above). If there is no blind write, then the schedule can never be

view serializable.

Blind write is writing a value or piece of data without reading it.

Example:

Schedule "S" having two transactions t1, t2, and t3 working simultaneously.

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 4 Page 6 of 6

S:

t1 t2 t3

R(x)

 W(x)

W(x)

 W(x)

Since there is a loop present, the schedule is non-conflicting serializable schedule. Now,

there are blind writes [t2 -> w(x) and t3 -> w(x)] present, hence check for View

Serializability.

One of its view equivalent schedules can be:

S':

t1 t2 t3

R(x)

W(x)

 W(x)

 W(x)

Hence, the schedule is view serializable.

NOTE:

One important thing to note here is that we can form a number of sequences of the

transactions such as:

t1 t2 t3

t1 t3 t2

t2 t1 t3

t2 t3 t1

t3 t1 t2

t3 t2 t1

This makes it a N-P Hard problem.

Benefits of Serialization

Serialization helps in checking concurrency control between multiple transactions. It also

helps in maintaining consistency in the database before and after any transaction.

Serializable schedules are resource-efficient and help in improving CPU throughput(total

work done in a certain time).

