
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23CST202 – Operating Systems
II YEAR - IV SEM

UNIT 4 – FILE SYSTEMS

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 1

Syllabus

 UNIT I OVERVIEW AND PROCESS MANAGEMENT 9

 Introduction - Computer System Organization, Architecture, Operation, Process Management – Memory Management –

Storage Management – Operating System – Process concept – Process scheduling – Operations on processes – Cooperating

processes – Inter process communication. Threads - Multi-threading Models – Threading issues.

 UNIT II PROCESS SCHEDULING AND SYNCHRONIZATION 10

 CPU Scheduling - Scheduling criteria – Scheduling algorithms – Multiple-processor scheduling – Real time scheduling –

Algorithm Evaluation. Process Synchronization - The critical-section problem – Synchronization hardware – Semaphores –

Classical problems of synchronization. Deadlock - System model – Deadlock characterization – Methods for handling

deadlocks – Deadlock prevention – Deadlock avoidance – Deadlock detection – Recovery from deadlock.

 UNIT III MEMORY MANAGEMENT 9

 Memory Management - Background – Swapping – Contiguous memory allocation – Paging – Segmentation – Segmentation

with paging. Virtual Memory - Background – Demand paging – Process creation – Page replacement – Allocation of frames

– Thrashing.

 UNIT IV FILE SYSTEMS 8

 File concept - Access methods – Directory structure – Files System Mounting – File Sharing – Protection. File System

Implementation - Directory implementation – Allocation methods – Free-space management.

 UNIT V I/O SYSTEMS 9

 I/O Systems - I/O Hardware – Application I/O interface – Kernel I/O subsystem – Streams – Performance. Mass-Storage

Structure: Disk scheduling – Disk management – Swap-space management – RAID – Disk attachment – Stable storage –

Tertiary storage. Case study: Implementation of Distributed File system in Cloud OS / Mobile OS.

 L :45 P:0 T: 45 PERIODS

File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT4/17/2025 2

FILE SYSTEMS

 File concept

 Access methods

 Directory structure

 Files System Mounting

 File Sharing

 Protection

File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT4/17/2025 3

File-System
Implementation

 In this section, we learn different data structures that used to assist
in the implementation of file systems.

 There are several on-disk and in-memory structures used for the
implementation of file systems.

 The on-disk structures are kept in the disks.

 The on-disk structures contain information about how to boot an
OS stored in the disk, total number of disk blocks, number and
location of free disk blocks, directory structure and individual files.

 The in-memory structures are kept in the main memory.

 The in-memory structures are helpful for file-system management,
caching and so on.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 4

File-System
Implementation

On-Disk Structures

 In this section, we understand the functionalities of different on-
disk data structures.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 5

File-System
Implementation

Boot control block

 Operating system is kept in the boot control block.

 If the disk has no operating system, this block is empty.

 In UNIX, the boot control block is called as a boot block.

 In NTFS, the boot control block is called as a partition boot sector.

 The boot control block is usually the first block of the volume where
the file system is kept.

 If a partition of a disk has an operating system, information about
how to boot.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 6

File-System
Implementation

Volume control block

 This data structure contains details about a volume (partition).

 The information maintained in the volume control block are number
of blocks in the partition, size of each block, number of free blocks in
the partition, free-block pointers (addresses of free disk blocks) and
so on.

 In UNIX the volume control block is called a superblock and is the
block next to the boot block.

 In NTFS, these details are stored in the master file table.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 7

File-System
Implementation

Directory structure (for each file system)

 The directory structure is used to organize files.

 In the directory structure, the names of files and associated
information are kept.

 In UNIX, the directory structure includes file names and associated
inode numbers.

 In NTFS, these details are stored in the master file table.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 8

File-System
Implementation

Per-file file control block (FCB)

 For each and every file, information about that file is maintained in a
file control block.

 The FCB has a unique identifier number to allow association with a
directory entry.

 In UNIX, the per-file file control block is nothing but the inode.

 The inode has an inode number, which is the unique identifier.

 In NTFS, the details about the file is stored in the master file table.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 9

File-System
Implementation

In-Memory Structures

These are data structures that are maintained inside the main memory.

• Mount table

– Information about each mounted volume is maintained in the mount
table.

• Directory-structure cache

– Holds directory information of recently accessed directories.

– If the same directory has to be accessed again, it is not necessary to
read from the disk.

– The details can be taken from the directory-structure cache.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 10

File-System
Implementation

• System-wide open-file table

– This data structure is common to all the processes present in the
system. This contains a copy of the FCB of each open file.

• Per-process open-file table

– This is a table that is available for each and every process. This per-
process open-file table points to the appropriate entry in the
system-wide open-file table.

• Buffers

– These are buffers that are kept in the memory to hold the contents of
disk blocks.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 11

File-System
Implementation

 Each buffer can hold the contents of one disk block.

 When contents of a disk block are read from the disk, they are
stored in these buffers kept in memory.

 If the contents of the same disk block are needed again, the contents
are taken from the buffer and need not be read from the disk.

 Similarly, the contents present in the buffer may be modified and
need not be written to the disk for each and every modification.

 It is enough to write the contents of the buffer to the disk when the
buffer is to be used for some other disk block contents.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 12

File Operations

Create a new file

 The application program calls the logical file system and gives the
name of the file to be created to the logical file system.

 The logical file system knows the name of the directory structures.

 It finds the name of the directory in which the file is to be created
from the file name given by the application program.

 The logical file system allocates a new FCB.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 13

File Operations

 In the case of UNIX, a new inode is allocated.

 The system reads the appropriate parent directory into memory.

 It updates the directory with the new file name and FCB and writes
the directory back to disk.

 Figure shows a typical file control block.

 The FCB has information about the file like the owner of the file, file
size, file permissions and so on.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 14

File Operations

 Open an Existing File

 The open() call called by the application program passes a file name
to the logical file system.

 The call first searches the system-wide open-file table to see if the
file is already in use by another process.

 If it is, a per-process open-file table entry is created pointing to the
existing system-wide open-file table entry.

 If file is not already open, the directory structure is searched for the
given file name.

 There is a possibility that parts of the directory structure are cached
in memory.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 15

File Operations

 If the directory structure is present in the cache, it is taken from the
cache.

 Else, the directory structure is read from the disk.

 Once the file is found, the FCB is copied into an entry in the system-
wide open-file table in memory.

 The FCB entry also keeps track of the number of processes that have
opened the file.

 An entry is made in the per-process open-file table.

 This entry points to the system-wide open-file table.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 16

File Operations

 The FCB entry also has information about where the next
read/write should be done on the file (file offset), access mode in
which the file is open.

 open() returns a pointer to the entry in the per-process file-system
table. All file operations after the open() system call use this pointer.

 In UNIX this pointer is called the file descriptor (file handle in
Windows).

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 17

File Operations

 Close a File

 When a process closes a file, the per-process open-file table’s entry
is removed.

 The count (count of the number of processes using the file) in the
system-wide open-file table entry is decremented.

 When the count becomes zero, the updated metadata is copied to
the directory structure in the disk and the system-wide open-file
table entry is removed.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 18

File Operations

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 19

File Operations

 Figure shows that the open call accesses the directory structure in
memory.

 If the directory structure is not cached in memory, it is read from
the disk.

 The file control block is accessed using the directory structure.

 If a copy of the FCB is not present in the memory, it is read from the
disk.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 20

File Operations

 Figure shows how the read system call uses the in-memory data
structures.

 The read uses the index returned by the open call to access the
entry in the per-process open-file table.

 The entry in the system-wide open-file table is obtained using the
pointer from the per-process open-file table.

 The file control block is accessed from the system-wide open-file
table and the data blocks are accessed using the entries in the FCB.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 21

Directory Implementation

 This section explains two different ways in which a directory can be
implemented.

 In the first method, a linear list of file names is maintained with
pointers to the data blocks.

 This method is simple to program but time-
consuming to execute.

 To create a new file, the directory is searched to find if another
file with a similar name exists.

 If no such file exists, a new entry is added to the end of the
directory.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 22

Directory Implementation

 To delete a file, the directory is searched for that file and the space
allocated to it is released.

 To reuse this deleted entry, the entry is marked as unused
by assigning it a special name or it is attached to a list of free
directory entries or the last entry in the directory is copied to the
freed location and the length of the directory is decreased.

 The entries can also be maintained as a linked list to reduce the time
required for deletion.

 The disadvantage of a linear list is that finding a file requires linear
search and this makes access slow.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 23

Directory Implementation

To reduce this search time

• Operating systems implement a software cache to store the most
recently used directory information.

• Maintaining a sorted list also allows a binary search and reduces the
search time.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 24

Directory Implementation

 But maintaining a sorted list is difficult.

 When new entries are added, the new entries should be added to the
appropriate position.

• Using a hash data structure

• –name and returns a pointer to the file name in the linear list.

• This reduces the

• – In addition to having a linear list for storing the directory entries,
a hash data structure can also be used.

• The hash table takes a value computed from the file search time.

• But provision must be made for collisions, that is, it is to be ensured
that two file names do not hash to the same location.

4/17/2025 File concepts/ 23CST202 - Operating Systems/ Anand Kumar. N/IT/SNSCT 25

	Slide 1
	Slide 2: Syllabus
	Slide 3: FILE SYSTEMS
	Slide 4: File-System Implementation
	Slide 5: File-System Implementation
	Slide 6: File-System Implementation
	Slide 7: File-System Implementation
	Slide 8: File-System Implementation
	Slide 9: File-System Implementation
	Slide 10: File-System Implementation
	Slide 11: File-System Implementation
	Slide 12: File-System Implementation
	Slide 13: File Operations
	Slide 14: File Operations
	Slide 15: File Operations
	Slide 16: File Operations
	Slide 17: File Operations
	Slide 18: File Operations
	Slide 19: File Operations
	Slide 20: File Operations
	Slide 21: File Operations
	Slide 22: Directory Implementation
	Slide 23: Directory Implementation
	Slide 24: Directory Implementation
	Slide 25: Directory Implementation

