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neural network will look like

There are many dense connections
here

For example all the 16 input neurons
are contributing to the computation
of h11

Contrast this to what happens in the
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2 * =

h11

h11 h12 Only a few local neurons participate
in the computation of h11

For example, only pixels 1, 2, 5, 6
contribute to h11

The connections are much sparser

We are taking advantage of the
structure of the image(interactions
between neighboring pixels are more
interesting)

This sparse connectivity reduces
the number of parameters in the
model
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But is sparse connectivity really good
thing ?

Aren’t we losing information (by los-
ing interactions between some input
pixels)

Well, not really

The two highlighted neurons (x1 &
x5)
∗ do not interact in layer 1

But they indirectly contribute to the
computation of g3 and hence interact
indirectly

∗ Goodfellow-et-al-2016
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16

4x4 Image

Kernel 1

Kernel 2

Another characteristic of
CNNs is weight sharing

Consider the following net-
work

Do we want the kernel
weights to be different for dif-
ferent portions of the image?

Imagine that we are trying
to learn a kernel that detects
edges

Shouldn’t we be applying the
same kernel at all the por-
tions of the image?
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In other words shouldn’t the orange
and pink kernels be the same

Yes, indeed

This would make the job of learning
easier(instead of trying to learn the
same weights/kernels at different loc-
ations again and again)

But does that mean we can have only
one kernel?

No, we can have many such kernels
but the kernels will be shared by all
locations in the image

This is called “weight sharing”
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So far, we have focused only on the convolution operation

Let us see what a full convolutional neural network looks like

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



38/68

So far, we have focused only on the convolution operation

Let us see what a full convolutional neural network looks like

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



39/68

32

32

Input

A
28

28

Convolution Layer 1

S = 1,F = 5,
K = 6,P = 0,

Param = 150

14

14

Pooling Layer 1

S = 1,F = 2,
K = 6,P = 0,

Param = 0

10

10

Convolution Layer 2

S = 1,F = 5,
K = 16,P = 0,

Param = 2400

5

5

Pooling Layer 2

S = 1,F = 2,
K = 16,P = 0,

Param = 0

FC 1(120)

Param
= 48120

FC 2(84)

Param
= 10164

Output(10)

Param
= 850

It has alternate convolution and pooling layers

What does a pooling layer do?

Let us see
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1 filter
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maxpool

2x2 filters (stride 2)
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1 4 2 1

5 8 3 4
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2x2 filters (stride 1)
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Instead of max pooling we can also do average pooling
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We will now see some case studies where convolution neural networks have been
successful
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How do we train a convolutional neural network ?
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We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



44/68

b c d

e f g

h i j

w x

y z

` m

n o

Output

` m

n o

Output

` m

n o

Output

` m

n o

Output

Input Kernel

We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



44/68

b c d

e f g

h i j

w x

y z

` m

n o

Output

` m

n o

Output

` m

n o

Output

` m

n o

Output

Input Kernel

We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



44/68

b c d

e f g

h i j

w x

y z

` m

n o

Output

` m

n o

Output

` m

n o

Output

` m

n o

Output

Input Kernel

We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



44/68

b c d

e f g

h i j

w x

y z

` m

n o

Output

` m

n o

Output

` m

n o

Output

` m

n o

Output

Input Kernel

We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



44/68

b c d

e f g

h i j

w x

y z

` m

n o

Output

` m

n o

Output

` m

n o

Output

` m

n o

Output

Input Kernel

We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



44/68

b c d

e f g

h i j

w x

y z

` m

n o

Output

` m

n o

Output

` m

n o

Output

` m

n o

Output

Input Kernel

We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



45/68

Module 11.4 : CNNs (success stories on ImageNet)
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ImageNet Success Stories(roadmap for rest of the talk)
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