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Consider the output at a certain layer
of a convolutional neural network

After this layer we could apply a max-
pooling layer

Or a 1 × 1 convolution

Or a 3 × 3 convolution

Or a 5 × 5 convolution

Question: Why choose between
these options (convolution, maxpool-
ing, filter sizes)?

Idea: Why not apply all of them at
the same time and then concatenate
the feature maps?
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Well this naive idea could result in a
large number of computations

If P = 0 & S = 1 then convolving a
W ×H ×D input with a F × F ×D
filter results in a (W − F + 1)(H −
F + 1) sized output

Each element of the output requires
O(F × F ×D) computations

Can we reduce the number of compu-
tations?
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Yes, by using 1 × 1 convolutions

Huh?? What does a 1×1 convolution
do ?

It aggregates along the depth

So convolving a D×W×H input with
D1 1×1 (D1 < D) filters will result in
a D1×W ×H output (S = 1, P = 0)

If D1 < D then this effectively re-
duces the dimension of the input and
hence the computations

Specifically instead of O(F × F ×D)
we will need O(F × F ×D1) compu-
tations

We could then apply subsequent 3×3,
5 × 5 filter on this reduced output
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Filter
concatenation

256

28
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But we might want to use different
dimensionality reductions before the
3 × 3 and 5 × 5 filters

So we can use D1 and D2 1 × 1 fil-
ters before the 3 × 3 and 5 × 5 filters
respectively

We can then add the maxpooling
layer followed by dimensionality re-
duction

And a new set of 1 × 1 convolutions

And finally we concatenate all these
layers

This is called the Inception module

We will now see GoogLeNet which
contains many such inception mod-
ules
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7

7
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7 × 7 × 1024

flatten
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W ∈ R50176×1000

pick average

1024

W ∈ R1024×1000

flatten

1024

Important Trick: Got rid of the
fully connected layer

Notice that output of the last layer is
7 × 7 × 1024 dimensional

What if we were to add a fully connec-
ted layer with 1000 nodes (for 1000
classes) on top of this

We would have 7×7×1024×1000 =
49M parameters

Instead they use an average pooling of
size 7 × 7 on each of the 1024 feature
maps

This results in a 1024 dimensional
output

Significantly reduces the number of
parameters
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12× less parameters than AlexNet

2× more computations
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GoogLeNet

ResNet
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Suppose we have been able to train a
shallow neural network well

Now suppose we construct a deeper
network which has few more layers (in
orange)

Intuitively, if the shallow network
works well then the deep network
should also work well by simply learn-
ing to compute identity functions in
the new layers

Essentially, the solution space of a
shallow neural network is a subset of
the solution space of a deep neural
network
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But in practice it is observed that this
doesn’t happen

Notice that the deep layers have a
higher error rate on the test set
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H(x)

x

relu

relu

F (x)

x

relu

relu

H(x) = F (x) + x

Identity

Consider any two stacked layers in a
CNN

The two layers are essentially
learning some function of the input

What if we enable it to learn only a
residual function of the input?
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H(x)

x

relu

relu

F (x)

x

relu

relu

H(x) = F (x) + x

Identity

Why would this help?

Remember our argument that a
deeper version of a shallow network
would do just fine by learning identity
transformations in the new layers

This identity connection from the in-
put allows a ResNet to retain a copy
of the input

Using this idea they were able to train
really deep networks

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



66/68

H(x)

x

relu

relu

F (x)

x

relu

relu

H(x) = F (x) + x

Identity

Why would this help?

Remember our argument that a
deeper version of a shallow network
would do just fine by learning identity
transformations in the new layers

This identity connection from the in-
put allows a ResNet to retain a copy
of the input

Using this idea they were able to train
really deep networks

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



66/68

H(x)

x

relu

relu

F (x)

x

relu

relu

H(x) = F (x) + x

Identity

Why would this help?

Remember our argument that a
deeper version of a shallow network
would do just fine by learning identity
transformations in the new layers

This identity connection from the in-
put allows a ResNet to retain a copy
of the input

Using this idea they were able to train
really deep networks

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



66/68

H(x)

x

relu

relu

F (x)

x

relu

relu

H(x) = F (x) + x

Identity

Why would this help?

Remember our argument that a
deeper version of a shallow network
would do just fine by learning identity
transformations in the new layers

This identity connection from the in-
put allows a ResNet to retain a copy
of the input

Using this idea they were able to train
really deep networks

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



67/68

ResNet, 152 layers

1st place in all five main tracks

ImageNet Classification: “Ultra-
deep” 152-layer nets

ImageNet Detection: 16% better
than the 2nd best system

ImageNet Localization: 27% bet-
ter than the 2nd best system

COCO Detection: 11% better than
the 2nd best system

COCO Segmentation: 12% better
than the 2nd best system
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ResNet, 152 layers

Bag of tricks

Batch Normalizaton after every
CONV layer

Xavier/2 initialization from [He et al]

SGD + Momentum(0.9)

Learning rate:0.1, divided by 10 when
validation error plateaus

Mini-batch size 256

Weight decay of 1e-5

No dropout used
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