

ALEXNET

THE ARCHITECTURE

- The AlexNet architecture was proposed by Alex Krizhevsky, Llya Sutskever ,and Geoffrey E. Hilton and research paper written based on this architecture is "<u>imageNet Classification With Deep Convolution</u> <u>Neural Networks</u>"
- The architecture has:
 - 1.Five Convolution Layers
 - 2 Three Fully Connected Layers (Final Layer is softmay)

CONTD...

- There are 60 Million Parameters in AlexNet so it is called as Deep Neural network
- It has more filters per layer as compared to LeNet. Convolution layers are more in AlxNet
- Dropout feature is added to ensure overfitting problem
- Data Augmentation(Mirroring image, to increase the training volume) is also done

Input Layer

AlexNet takes images of the Input size of 227x227x3 RGB Pixels. **Convolutional Layers**

•First Layer: The first layer uses 96 kernels of size 11×11 with a stride of 4, activates them with the ReLU activation function, and then performs a Max Pooling operation.

•Second Layer: The second layer takes the output of the first layer as the input, with 256 kernels of size 5x5x48.

•**Third Layer**: 384 kernels of size 3x3x256. No pooling or normalization operations are performed on the third, fourth, and fifth layers.

•Fourth Layer: 384 kernels of size 3x3x192.

•Fifth Layer: 256 kernels of size 3x3x192.

Fully Connected Layers

The fully connected layers have 4096 neurons each.

Output Layer

The output layer is a SoftMax layer that outputs probabilities of the 1000 class labels.

DIMENSIONS AND DETAILS

Layer		Filters	size	Kernel Size	Stride	Activation
Input	Image	1	227*227*3	-		
1	Convolution	96	55*55*96	11*11	4	relu
	Max Pooling	96	27*27*256	3*3	2	
2	Convolution	256	27*27*256	5*5	1	relu
	Max Pooling	256	13*13*256	3*3	2	
3	Convolution	384	13*13*384	3*3	1	relu
4	Convolution	384	13*13*384	3*3	1	relu
5	Convolution	256	13*13*256	3*3	1	relu
	Max Pooling	256	6*6*256	3*3	2	
6	Fully Connected	8	9216 (Neurons)			relu
7	Fully Connected	•	4096 (Neurons)		*	relu

DIMENSIONS AND DETAILS

Without Padding Formula

$$\left(\frac{n-f}{s}+1, \frac{n-f}{s}+1\right)$$
$$\left(\frac{227-11}{4}+1, \frac{227-11}{4}+1\right) = 55*55*96$$

With Padding Formula

$$\left(\frac{\frac{n+2p-f}{s}+1,\frac{n+2p-f}{s}+1}{1}\right)$$
$$\left(\frac{\frac{27+2(2)-5}{1}+1,\frac{27+2(2)-5}{1}+1}{1}\right) = 27*27*256$$

