TRANSACTION CONCEPTS

A transaction is a single, logical unit of work that consists of one or more
related tasks. A transaction is treated as a single, indivisible operation, which
means that either all the tasks within the transaction are executed
successfully, or none are.

Transaction States in DBMS

During the lifetime of a transaction, there are a lot of states to go through.
These states update the operating system about the current state of the
transaction and also tell the user about how to plan further processing of the
transaction. These states decide the regulations which decide the fate of a
transaction whether it will commit or abort.

Partially :

; Committed | —p | Committed

Read/ Write State
z State Permanent
Operations
Store
Active Failure Terminated
State State
v
Failure Failed Roll Back Aborted
State I State

The ROLLBACK statement undo the changes made by the current transaction.
A transaction cannot undo changes after COMMIT execution.

Following are the different types of transaction States :

Active State: When the operations of a transaction are running then the
transaction is said to be in active state. If all the read and write operations are

performed without any error then it progresses to the partially committed
state, if somehow any operation fails, then it goes to a state known as failed
state.

Partially Committed: After all the read and write operations are completed,
the changes which were previously made in the main memory are now made
permanent in the database, after which the state will progress to committed
state but in case of a failure it will go to the failed state.

Failed State: If any operation during the transaction fails due to some
software or hardware issues, then it goes to the failed state . The occurrence of
a failure during a transaction makes a permanent change to data in the
database. The changes made into the local memory data are rolled back to the
previous consistent state.

Aborted State: If the transaction fails during its execution, it goes from failed
state to aborted state and because in the previous states all the changes were
only made in the main memory, these uncommitted changes are either deleted
or rolled back. The transaction at this point can restart and start afresh from
the active state.

Committed State: If the transaction completes all sets of operations
successfully, all the changes made during the partially committed state are
permanently stored and the transaction is stated to be completed, thus the
transaction can progress to finally get terminated in the terminated state.

Terminated State: If the transaction gets aborted after roll-back or the
transaction comes from the committed state, then the database comes to a
consistent state and is ready for further new transactions since the previous
transaction is now terminated.

States of Transactions

In a database, a transaction can be in one of these states given below —

Partially
/ committed
End
\A Aborted
—y

Active — This is the state in which a transaction is being executed. Thus, it is
like the initial state of any given transaction.

Partially Committed — A transaction is in its partially committed state
whenever it executes the final operation.

Failed — In case any check made by a database recovery system fails, then that
transaction is in a failed state. Remember that a failed transaction can not
proceed further.

Aborted — In case any check fails, leading the transaction to a failed state, the
recovery manager then rolls all its write operations back on the database so
that it can bring the DB (database) back to the original state (the state where it
actually was prior to the transaction execution). The transactions in this state
are known to be aborted. A DB recovery module can actually select one of
these two operations after the abortion of a transaction -

Re-start

Kill the transaction

Begin—

Committed — We can say that a transaction is committed in case it actually
executes all of its operations successfully. In such a case, all of its effects are
now established permanently on the DB system.

