
Overview 

When several transactions execute concurrently without any rules and protocols, 

various problems arise that may harm the data integrity of several databases. 

These problems are known as concurrency control problems. Therefore 

several rules are designed, to maintain consistency in the transactions while they 

are executing concurrently which are known as concurrency control protocols. 

What is concurrency control in DBMS? 

A transaction is a single reasonable unit of work that can retrieve or may change 

the data of a database. Executing each transaction individually increases 

the waiting time for the other transactions and the overall execution also gets 

delayed. Hence, to increase the throughput and to reduce the waiting time, 

transactions are executed concurrently. 

Example: Suppose, between two railway stations, A and B, 5 trains have to 

travel, if all the trains are set in a row and only one train is allowed to move 

from station A to B and others have to wait for the first train to reach its 

destination then it will take a lot of time for all the trains to travel from 

station A to B. To reduce time all the trains should be allowed to move 

concurrently from station A to B ensuring no risk of collision between them. 

When several transactions execute simultaneously, then there is a risk of 

violation of the data integrity of several databases. Concurrency Control in 

DBMS is a procedure of managing simultaneous transactions ensuring 

their atomicity, isolation, consistency and serializability. 

Concurrent Execution in DBMS 

● In a multi-user system, multiple users can access and use the same 

database at one time, which is known as the concurrent execution of the 

https://www.scaler.com/topics/dbms/transaction-in-dbms/
https://www.scaler.com/topics/atomicity-in-dbms/


database. It means that the same database is executed simultaneously on a 

multi-user system by different users. 

● While working on the database transactions, there occurs the requirement 

of using the database by multiple users for performing different 

operations, and in that case, concurrent execution of the database is 

performed. 

● The thing is that the simultaneous execution that is performed should be 

done in an interleaved manner, and no operation should affect the other 

executing operations, thus maintaining the consistency of the database. 

Thus, on making the concurrent execution of the transaction operations, 

there occur several challenging problems that need to be solved. 

● Concurrency Control Problems 

● Several problems that arise when numerous transactions execute 

simultaneously in a random manner are referred to as Concurrency 

Control Problems. 

● Dirty Read Problem 

● The dirty read problem in DBMS occurs when a transaction reads the 

data that has been updated by another transaction that is still 

uncommitted. It arises due to multiple uncommitted transactions 

executing simultaneously. 

● Example: Consider two transactions A and B performing read/write 

operations on a data DT in the database DB. The current value of DT is 

1000: The following table shows the read/write operations in A and B 

transactions. 

Time A B 

T1 READ(DT) ------ 

https://www.scaler.com/topics/dirty-read-problem-in-dbms/


Time A B 

T2 DT=DT+500 ------ 

T3 WRITE(DT) ------ 

T4 ------ READ(DT) 

T5 ------ COMMIT 

T6 ROLLBACK ------ 

● Transaction A reads the value of data DT as 1000 and modifies it to 1500 

which gets stored in the temporary buffer. The transaction B reads the 

data DT as 1500 and commits it and the value of DT permanently gets 

changed to 1500 in the database DB. Then some server errors occur in 

transaction A and it wants to get rollback to its initial value, i.e., 1000 and 

then the dirty read problem occurs. 

● Unrepeatable Read Problem 

● The unrepeatable read problem occurs when two or more different values 

of the same data are read during the read operations in the same 

transaction. 

● Example: Consider two transactions A and B performing read/write 

operations on a data DT in the database DB. The current value of DT is 

1000: The following table shows the read/write operations in A and B 

transactions. 

Time A B 

T1 READ(DT) ------ 

T2 ------ READ(DT) 



Time A B 

T3 DT=DT+500 ------ 

T4 WRITE(DT) ------ 

T5 ------ READ(DT) 

● Transaction A and B initially read the value of DT as 1000. Transaction A 

modifies the value of DT from 1000 to 1500 and then again transaction B 

reads the value and finds it to be 1500. Transaction B finds two different 

values of DT in its two different read operations. 

● Phantom Read Problem 

● In the phantom read problem, data is read through two different read 

operations in the same transaction. In the first read operation, a value of 

the data is obtained but in the second operation, an error is obtained 

saying the data does not exist. 

● Example: Consider two transactions A and B performing read/write 

operations on a data DT in the database DB. The current value of DT is 

1000: The following table shows the read/write operations in A and B 

transactions. 

Time A B 

T1 READ(DT) ------ 

T2 ------ READ(DT) 

T3 DELETE(DT) ------ 

T4 ------ READ(DT) 



● Transaction B initially reads the value of DT as 1000. Transaction A 

deletes the data DT from the database DB and then again transaction B 

reads the value and finds an error saying the data DT does not exist in the 

database DB. 

● Lost Update Problem 

● The Lost Update problem arises when an update in the data is done over 

another update but by two different transactions. 

● Example: Consider two transactions A and B performing read/write 

operations on a data DT in the database DB. The current value of DT is 

1000: The following table shows the read/write operations in A and B 

transactions. 

Time A B 

T1 READ(DT) ------ 

T2 DT=DT+500 ------ 

T3 WRITE(DT) ------ 

T4 ------ DT=DT+300 

T5 ------ WRITE(DT) 

T6 READ(DT) ------ 

● Transaction A initially reads the value of DT as 1000. Transaction A 

modifies the value of DT from 1000 to 1500 and then again transaction B 

modifies the value to 1800. Transaction A again reads DT and finds 1800 

in DT and therefore the update done by transaction A has been lost. 

https://www.scaler.com/topics/lost-update-problem-in-dbms/


● Incorrect Summary Problem 

● The Incorrect summary problem occurs when there is an incorrect sum of 

the two data. This happens when a transaction tries to sum two data using 

an aggregate function and the value of any one of the data get changed by 

another transaction. 

● Example: Consider two transactions A and B performing read/write 

operations on two data DT1 and DT2 in the database DB. The current 

value of DT1 is 1000 and DT2 is 2000: The following table shows the 

read/write operations in A and B transactions. 

Time A B 

T1 READ(DT1) ------ 

T2 add=0 ------ 

T3 add=add+DT1 ------ 

T4 ------ READ(DT2) 

T5 ------ DT2=DT2+500 

T6 READ(DT2) ------ 

T7 add=add+DT2 ------ 

● Transaction A reads the value of DT1 as 1000. It uses an aggregate 

function SUM which calculates the sum of two data DT1 and DT2 in 

variable add but in between the value of DT2 get changed from 2000 to 

2500 by transaction B. Variable add uses the modified value of DT2 and 

gives the resultant sum as 3500 instead of 3000. 

 


	What is concurrency control in DBMS? 
	Concurrent Execution in DBMS 
	●Concurrency Control Problems 
	●Dirty Read Problem 
	●Unrepeatable Read Problem 
	●Phantom Read Problem 
	●Lost Update Problem 
	●Incorrect Summary Problem 


