

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

1 / 9

DEPARTMENT OF AIML
23CST202- OPERATING SYSTEMS

II YEAR IV SEM AIML-B
UNIT 2-PROCESS SCHEDULING AND SYNCHRONIZATION

TOPIC –REAL TIME SCHEDULING,ALGORITHM EVALUATION

AND PROCESS SYNCHRONIZATION

REAL TIME SCHEDULING

Real-time systems are systems that carry real-time tasks. These tasks need to be

performed immediately with a certain degree of urgency. In particular, these tasks

are related to control of certain events (or) reacting to them. Real-time tasks can be

classified as hard real-time tasks and soft real-time tasks.

A hard real-time task must be performed at a specified time which could otherwise

lead to huge losses. In soft real-time tasks, a specified deadline can be missed. This

is because the task can be rescheduled (or) can be completed after the specified

time,

In real-time systems, the scheduler is considered as the most important component

which is typically a short-term task scheduler. The main focus of this scheduler is to

reduce the response time associated with each of the associated processes instead of

handling the deadline.

If a preemptive scheduler is used, the real-time task needs to wait until its

corresponding tasks time slice completes. In the case of a non-preemptive scheduler,

even if the highest priority is allocated to the task, it needs to wait until the

completion of the current task. This task can be slow (or) of the lower priority and

can lead to a longer wait.

A better approach is designed by combining both preemptive and non-preemptive

scheduling. This can be done by introducing time-based interrupts in priority based

systems which means the currently running process is interrupted on a time-based

interval and if a higher priority process is present in a ready queue, it is executed by

preempting the current process.

Advantages of Scheduling in Real-Time Systems:

 Meeting Timing Constraints: Scheduling ensures that real-time tasks are

executed within their specified timing constraints. It guarantees that critical

tasks are completed on time, preventing potential system failures or losses.

 Resource Optimization: Scheduling algorithms allocate system resources

effectively, ensuring efficient utilization of processor time, memory, and other

resources. This helps maximize system throughput and performance.

 Priority-Based Execution: Scheduling allows for priority-based execution,

where higher-priority tasks are given precedence over lower-priority tasks. This

https://www.geeksforgeeks.org/real-time-systems/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

2 / 9

ensures that time-critical tasks are promptly executed, leading to improved

system responsiveness and reliability.

 Predictability and Determinism: Real-time scheduling provides predictability

and determinism in task execution. It enables developers to analyze and

guarantee the worst-case execution time and response time of tasks, ensuring

that critical deadlines are met.

 Control Over Task Execution: Scheduling algorithms allow developers to have

fine-grained control over how tasks are executed, such as specifying task

priorities, deadlines, and inter-task dependencies. This control facilitates the

design and implementation of complex real-time systems.

Disadvantages of Scheduling in Real-Time Systems:

 Increased Complexity: Real-time scheduling introduces additional complexity

to system design and implementation. Developers need to carefully analyze task

requirements, define priorities, and select suitable scheduling algorithms. This

complexity can lead to increased development time and effort.

 Overhead: Scheduling introduces some overhead in terms of context switching,

task prioritization, and scheduling decisions. This overhead can impact system

performance, especially in cases where frequent context switches or complex

scheduling algorithms are employed.

 Limited Resources: Real-time systems often operate under resource-

constrained environments. Scheduling tasks within these limitations can be

challenging, as the available resources may not be sufficient to meet all timing

constraints or execute all tasks simultaneously.

 Verification and Validation: Validating the correctness of real-time schedules

and ensuring that all tasks meet their deadlines require rigorous testing and

verification techniques. Verifying timing constraints and guaranteeing the

absence of timing errors can be a complex and time-consuming process.

 Scalability: Scheduling algorithms that work well for smaller systems may not

scale effectively to larger, more complex real-time systems. As the number of

tasks and system complexity increases, scheduling decisions become more

challenging and may require more advanced algorithms or approaches.

ALGORITHM EVALUATION

Evaluation of Process Scheduling Algorithms

The first thing we need to decide is how we will evaluate the algorithms. To do this

we need to decide on the relative importance of the factors we listed above (Fairness,

Efficiency, Response Times, Turnaround and Throughput). Only once we have

decided on our evaluation method can we carry out the evaluation.

Deterministic Modeling

This evaluation method takes a predetermined workload and evaluates each algorithm

using that workload.

Assume we are presented with the following processes, which all arrive at time zero.

Process Burst Time

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

3 / 9

P1 9

P2 33

P3 2

P4 5

P5 14

Which of the following algorithms will perform best on this workload?

First Come First Served (FCFS), Non Preemptive Shortest Job First (SJF) and Round

Robin (RR). Assume a quantum of 8 milliseconds.

Before looking at the answers, try to calculate the figures for each algorithm.

The advantages of deterministic modeling is that it is exact and fast to compute. The

disadvantage is that it is only applicable to the workload that you use to test. As an

example, use the above workload but assume P1 only has a burst time of 8

milliseconds. What does this do to the average waiting time?

Of course, the workload might be typical and scale up but generally deterministic

modeling is too specific and requires too much knowledge about the workload.

Queuing Models

Another method of evaluating scheduling algorithms is to use queuing theory. Using

data from real processes we can arrive at a probability distribution for the length of a

burst time and the I/O times for a process. We can now generate these times with a

certain distribution.

We can also generate arrival times for processes (arrival time distribution).

If we define a queue for the CPU and a queue for each I/O device we can test the

various scheduling algorithms using queuing theory.

Knowing the arrival rates and the service rates we can calculate various figures such

as average queue length, average wait time, CPU utilization etc.

One useful formula is Little's Formula.

n = λw

Where

n is the average queue length

λ is the average arrival rate for new processes (e.g. five a second)

w is the average waiting time in the queue

Knowing two of these values we can, obviously, calculate the third. For example, if

we know that eight processes arrive every second and there are normally sixteen

processes in the queue we can compute that the average waiting time per process is

two seconds.

The main disadvantage of using queuing models is that it is not always easy to define

realistic distribution times and we have to make assumptions. This results in the

model only being an approximation of what actually happens.

Simulations

Rather than using queuing models we simulate a computer. A Variable, representing a

clock is incremented. At each increment the state of the simulation is updated.

Statistics are gathered at each clock tick so that the system performance can be

analysed.

The data to drive the simulation can be generated in the same way as the queuing

model, although this leads to similar problems.

Alternatively, we can use trace data. This is data collected from real processes on real

machines and is fed into the simulation. This can often provide good results and good

http://www.cs.nott.ac.uk/~pszgxk/courses/g53ops/Scheduling/sched13-answers.html

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

4 / 9

comparisons over a range of scheduling algorithms.

However, simulations can take a long time to run, can take a long time to implement

and the trace data may be difficult to collect and require large amounts of storage.

Implementation

The best way to compare algorithms is to implement them on real machines. This will

give the best results but does have a number of disadvantages.

· It is expensive as the algorithm has to be written and then

implemented on real hardware.

· If typical workloads are to be monitored, the scheduling algorithm

must be used in a live situation. Users may not be happy with an

environment that is constantly changing.

· If we find a scheduling algorithm that performs well there is no

guarantee that this state will continue if the workload or environment

changes.

PROCESS SYNCHRONIZATION

Process Synchronization is used in a computer system to ensure that multiple

processes or threads can run concurrently without interfering with each other.

The main objective of process synchronization is to ensure that multiple processes

access shared resources without interfering with each other and to prevent the

possibility of inconsistent data due to concurrent access. To achieve this, various

synchronization techniques such as semaphores, monitors, and critical sections are

used.

In a multi-process system, synchronization is necessary to ensure data consistency

and integrity, and to avoid the risk of deadlocks and other synchronization problems.

Process synchronization is an important aspect of modern operating systems, and it

plays a crucial role in ensuring the correct and efficient functioning of multi-process

systems.

On the basis of synchronization, processes are categorized as one of the following

two types:

 Independent Process: The execution of one process does not affect the

execution of other processes.

 Cooperative Process: A process that can affect or be affected by other

processes executing in the system.

Process synchronization problem arises in the case of Cooperative processes also

because resources are shared in Cooperative processes.

Process Synchronization

Process Synchronization is the coordination of execution of multiple processes in a

multi-process system to ensure that they access shared resources in a controlled and

predictable manner. It aims to resolve the problem of race conditions and other

synchronization issues in a concurrent system.

https://www.geeksforgeeks.org/process-in-operating-system/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

5 / 9

Lack of Synchronization in Inter Process Communication Environment leads to

following problems:

1. Inconsistency: When two or more processes access shared data at the same time

without proper synchronization. This can lead to conflicting changes, where one

process’s update is overwritten by another, causing the data to become

unreliable and incorrect.

2. Loss of Data: Loss of data occurs when multiple processes try to write or

modify the same shared resource without coordination. If one process overwrites

the data before another process finishes, important information can be lost,

leading to incomplete or corrupted data.

3. Deadlock: Lack of Synchronization leads to Deadlock which means that two or

more processes get stuck, each waiting for the other to release a resource.

Because none of the processes can continue, the system becomes unresponsive

and none of the processes can complete their tasks.

Types of Process Synchronization

The two primary type of process Synchronization in an Operating System are:

1. Competitive: Two or more processes are said to be in Competitive

Synchronization if and only if they compete for the accessibility of a shared

resource.

Lack of Synchronization among Competing process may lead to either

Inconsistency or Data loss.

2. Cooperative: Two or more processes are said to be in Cooperative

Synchronization if and only if they get affected by each other i.e. execution of

one process affects the other process.

Lack of Synchronization among Cooperating process may lead to Deadlock.

Example:

Let consider a Linux code:

>>ps/grep "chrome"/wc

 ps command produces list of processes running in linux.

 grep command find/count the lines form the output of the ps command.

 wc command counts how many words are in the output.

https://www.geeksforgeeks.org/inter-process-communication-ipc/
https://www.geeksforgeeks.org/introduction-of-deadlock-in-operating-system/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

6 / 9

Therefore, three processes are created which are ps, grep and wc. grep takes input

from ps and wc takes input from grep.

From this example, we can understand the concept of cooperative processes, where

some processes produce and others consume, and thus work together. This type of

problem must be handled by the operating system, as it is the manager.

Conditions That Require Process Synchronization

1. Critical Section: It is that part of the program where shared resources are

accessed. Only one process can execute the critical section at a given point of

time. If there are no shared resources, then no need of synchronization

mechanisms.

2. Race Condition: It is a situation wherein processes are trying to access the

critical section and the final result depends on the order in which they finish

their update. Process Synchronization mechanism need to ensure that

instructions are being executed in a required order only.

3. Pre Emption: Preemption is when the operating system stops a running process

to give the CPU to another process. This allows the system to make sure that

important tasks get enough CPU time. This is important as mainly issues arise

when a process has not finished its job on shared resource and got preempted.

The other process might end up reading an inconsistent value if process

synchronization is not done.

What is Race Condition?

A race condition is a situation that may occur inside a critical section. This

happens when the result of multiple process/thread execution in the critical section

differs according to the order in which the threads execute. Race conditions in

critical sections can be avoided if the critical section is treated as an atomic

instruction. Also, proper thread synchronization using locks or atomic variables can

prevent race conditions.

Let us consider the following example.

 There is a shared variable balance with value 100.

 There are two processes deposit(10) and withdraw(10). The deposit process does

balance = balance + 10 and withdraw process does balance = balance – 10.

 Suppose these processes run in an interleaved manner. The deposit() fetches the

balance as 100, then gets preempted.

 Now withdraw() get scheduled and makes balance 90.

 Finally deposit is rescheduled and makes the value as 110. This value is not

correct as the balance after both operations should be 100 only

We can not notice that the different segments of two processes running in different

order would give different values of balance.

Critical Section Problem

A critical section is a code segment that can be accessed by only one process at a

time. The critical section contains shared variables that need to be synchronized to

maintain the consistency of data variables. Sothe critical section problem means

designing a way for cooperative processes to access shared resources without

creating data inconsistencies.

https://www.geeksforgeeks.org/race-condition-vulnerability/
https://www.geeksforgeeks.org/g-fact-70/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

7 / 9

In the above example, the operations that involve balance variable should be put in

critical sections of both deposit and withdraw.

In the entry section, the process requests for entry in the Critical Section.

Any solution to the critical section problem must satisfy three requirements:

 Mutual Exclusion: If a process is executing in its critical section, then no other

process is allowed to execute in the critical section.

 Progress: If no process is executing in the critical section and other processes

are waiting outside the critical section, then only those processes that are not

executing in their remainder section can participate in deciding which will enter

the critical section next, and the selection cannot be postponed indefinitely.

 Bounded Waiting: A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process has made a

request to enter its critical section and before that request is granted.

Critical section Problem – Solutions

Classical IPC Problems

Various classical Inter-Process Communication (IPC) problems include:

 Producer Consumer Problem

 Readers-Writers Problem

 Dining Philosophers Problem

Producer Consumer Problem

The Producer-Consumer Problem is a classic example of process synchronization. It

describes a situation where two types of processes producers and consumers share a

common, limited-size buffer or storage.

https://www.geeksforgeeks.org/solution-to-critical-section-problem/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

8 / 9

 Producer: A producer creates or generates data and puts it into the shared buffer.

It continues to produce data as long as there is space in the buffer.

 Consumer: A consumer takes data from the buffer and uses it. It continues to

consume data as long as there is data available in the buffer.

The challenge arises because both the producer and the consumer need to access the

same buffer at the same time, and if they do not properly synchronize their actions,

issues can occur.

Key Problems in the Producer-Consumer Problem:

1. Buffer Overflow: If the producer tries to add data when the buffer is full, there

will be no space for new data, causing the producer to be blocked.

2. Buffer Underflow: If the consumer tries to consume data when the buffer is

empty, it has nothing to consume, causing the consumer to be blocked.

Producer-Consumer Problem – Solution (using Semaphores)

Readers-Writers Problem

The Readers-Writers Problem is a classic synchronization problem where multiple

processes are involved in reading and writing data from a shared resource. This

problem typically involves two types of processes:

 Readers: These processes only read data from the shared resource and do not

modify it.

 Writers: These processes modify or write data to the shared resource.

The challenge in the Reader-Writer problem is to allow multiple readers to access

the shared data simultaneously without causing issues. However, only one

writer should be allowed to write at a time, and no reader should be allowed to read

while a writer is writing. This ensures the integrity and consistency of the data.

Readers-Writers Problem – Solution (Readers Preference Solution)

Readers-Writers Problem – Solution (Writers Preference Solution)

Dining Philosophers Problem

The Dining Philosophers Problem is a well-known example that shows the

difficulties of sharing resources and preventing deadlock when multiple processes

are involved. The problem involves a set of philosophers sitting around a dining

table. Each philosopher thinks deeply, but when they are hungry, they need to eat.

However, to eat, they must pick up two forks from the table, one from the left and

one from the right.

Problem Setup:

 There are five philosophers sitting around a circular table.

 Each philosopher has a plate of food in front of them and a fork to their left and

right.

 A philosopher needs both forks to eat. If they pick up a fork, they hold it until

they finish eating.

 After eating, they put down both forks and start thinking again.

https://www.geeksforgeeks.org/producer-consumer-problem-using-semaphores-set-1/
https://www.geeksforgeeks.org/readers-writers-problem-set-1-introduction-and-readers-preference-solution/
https://www.geeksforgeeks.org/readers-writers-problem-writers-preference-solution/
https://www.geeksforgeeks.org/dining-philosophers-problem/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

9 / 9

The problem arises when multiple philosophers try to pick up forks at the same time,

which can lead to a situation where each philosopher holds one fork but cannot get

the second fork, leading to a deadlock. Additionally, there’s a risk of starvation if

some philosophers are continually denied the opportunity to eat.

Dining Philosophers Problem – Solution (using Semaphores)

Advantages of Process Synchronization

 Ensures data consistency and integrity

 Avoids race conditions

 Prevents inconsistent data due to concurrent access

 Supports efficient and effective use of shared resources

Disadvantages of Process Synchronization

 Adds overhead to the system

 This can lead to performance degradation

 Increases the complexity of the system

 Can cause deadlock if not implemented properly.

https://www.geeksforgeeks.org/dining-philosopher-problem-using-semaphores/
https://www.geeksforgeeks.org/introduction-of-deadlock-in-operating-system/

	ALGORITHM EVALUATION
	Evaluation of Process Scheduling Algorithms
	Deterministic Modeling
	Queuing Models
	Simulations
	Implementation
	Process Synchronization
	Types of Process Synchronization
	Conditions That Require Process Synchronization
	What is Race Condition?
	Critical Section Problem
	Classical IPC Problems
	Producer Consumer Problem
	Key Problems in the Producer-Consumer Problem:

	Readers-Writers Problem
	Dining Philosophers Problem
	Problem Setup:

	Advantages of Process Synchronization
	Disadvantages of Process Synchronization

