
Concurrency Control Protocols 

Concurrency control protocols allow multiple transactions to happen while 

ensuring they are conflict/view serializable, recoverable, and sometimes 

cascadeless. These protocols enforce rules to prevent non-serializable 

schedules. 

 

Types of Lock-Based Protocols 

Simplistic Lock Protocol 

The simplistic lock protocol requires that a transaction must obtain a lock on 

every data item it accesses before reading or writing. Once the transaction 

completes all its operations, it releases all the locks. 

 

Characteristics: 

Easy to implement with a simple rule: acquire a lock before accessing a data 

item. 

Uses a single type of lock, limiting concurrent access to data items. 

 

Advantages: 

Simple to understand and implement. 

Maintains data consistency by preventing concurrent access to the same data 

item. 

 

Disadvantages: 

Limits concurrency and can lead to performance bottlenecks. 

Does not address deadlocks, where transactions wait indefinitely for each 

other. 



 

Pre-Claiming Lock Protocol 

The pre-claiming lock protocol mandates that a transaction must declare and 

obtain all the locks it will need before any operations are performed. 

 

Characteristics: 

A transaction must acquire all required locks at the beginning or wait until 

they are all available. 

Helps prevent deadlocks by avoiding cyclic dependencies. 

 

Advantages: 

Prevents deadlocks by acquiring all locks upfront. 

Straightforward to understand and implement. 

 

Disadvantages: 

Holding all locks can reduce concurrency, leading to potential performance 

issues. 

Locks may be held longer than necessary, leading to inefficient resource use. 

 

Two-Phase Locking (2PL) 

The Two-Phase Locking protocol divides transaction execution into two 

phases: the growing phase and the shrinking phase. 

 

Growing Phase: Transactions can acquire locks but cannot release any. 

Shrinking Phase: Transactions can release locks but cannot acquire new ones. 

 



Characteristics: 

Guarantees that transactions are serializable. 

Can lead to deadlocks, similar to simplistic protocols. 

 

Advantages: 

Preserves database consistency through serializability. 

Ensures transactions do not interfere with each other. 

 

Disadvantages: 

Can lead to deadlocks. 

Performance overhead due to locking phases. 

Strict Two-Phase Locking (Strict-2PL) 

This is a variant of the 2PL protocol where a transaction must hold all its 

exclusive locks until it commits or aborts. 

 

Characteristics: 

Exclusive locks are retained until the transaction completes. 

Shared locks can be released before the transaction commits. 

 

Advantages: 

Prevents cascading aborts, ensuring consistency. 

Simplifies recovery as uncommitted changes are not visible to other 

transactions. 

 

Disadvantages: 

Can lead to deadlocks, similar to basic 2PL. 



Reduced concurrency due to holding exclusive locks. 

 

Conclusion 

Locking protocols are essential for ensuring consistency and isolation of 

transactions in a multi-user database. By understanding and properly 

implementing shared locks, exclusive locks, and various locking protocols like 

Two-Phase Locking, databases can effectively manage concurrent transactions, 

prevent conflicts, and maintain data integrity. 


