
Transaction Recovery – Save Points 

Database Systems like any other computer system, are subject to failures but the data 

stored in them must be available as and when required. When a database fails it must 

possess the facilities for fast recovery. It must also have atomicity i.e. either transactions 

are completed successfully and committed (the effect is recorded permanently in the 

database) or the transaction should have no effect on the database. 

Types of Recovery Techniques Database recovery techniques are used in database 

management systems (DBMS) to restore a database to a consistent state after a failure or 

error has occurred. The main goal of recovery techniques is to ensure data integrity and 

consistency and prevent data loss. 

There are mainly two types of recovery techniques used in DBMS 

●​ Rollback/Undo Recovery Technique 

●​ Commit/Redo Recovery Technique 

●​ CheckPoint Recovery Technique 

Database recovery techniques ensure data integrity in case of system failures. 

Understanding how these techniques work is crucial for managing databases effectively. 

Rollback/Undo Recovery Technique 

The rollback/undo recovery technique is based on the principle of backing out or undoing 

the effects of a transaction that has not been completed successfully due to a system 

failure or error. This technique is accomplished by undoing the changes made by the 

transaction using the log records stored in the transaction log. The transaction log 

contains a record of all the transactions that have been performed on the database. The 

system uses the log records to undo the changes made by the failed transaction and 

restore the database to its previous state. 

Commit/Redo Recovery Technique 

The commit/redo recovery technique is based on the principle of reapplying the changes 

made by a transaction that has been completed successfully to the database. This 

technique is accomplished by using the log records stored in the transaction log to redo 

the changes made by the transaction that was in progress at the time of the failure or 

error. The system uses the log records to reapply the changes made by the transaction and 

restore the database to its most recent consistent state. 

Checkpoint Recovery Technique 

Checkpoint Recovery is a technique used to improve data integrity and system stability, 

especially in databases and distributed systems. It entails preserving the system’s state at 

 



regular intervals, known as checkpoints, at which all ongoing transactions are either 

completed or not initiated. This saved state, which includes memory and CPU registers, is 

kept in stable, non-volatile storage so that it can withstand system crashes. In the event of 

a breakdown, the system can be restored to the most recent checkpoint, which reduces 

data loss and downtime. The frequency of checkpoint formation is carefully regulated to 

decrease system overhead while ensuring that recent data may be restored quickly. 

Overall, recovery techniques are essential to ensure data consistency and availability in 

Database Management System, and each technique has its own advantages and limitations 

that must be considered in the design of a recovery system. 

Database Systems 

There are both automatic and non-automatic ways for both, backing up data and recovery 

from any failure situations. The techniques used to recover lost data due to system 

crashes, transaction errors, viruses, catastrophic failure, incorrect command execution, 

etc. are database recovery techniques. So to prevent data loss recovery techniques based 

on deferred updates and immediate updates or backing up data can be used. Recovery 

techniques are heavily dependent upon the existence of a special file known as a system 

log. It contains information about the start and end of each transaction and any updates 

which occur during the transaction. The log keeps track of all transaction operations that 

affect the values of database items. This information is needed to recover from transaction 

failure. 

●​ The log is kept on disk start_transaction(T): This log entry records that 

transaction T starts the execution. 

●​ read_item(T, X): This log entry records that transaction T reads the value of database item X. 

●​ write_item(T, X, old_value, new_value): This log entry records that transaction T 

changes the value of the database item X from old_value to new_value. The old value 

is sometimes known as a before an image of X, and the new value is known as an 

afterimage of X. 

●​ commit(T): This log entry records that transaction T has completed all accesses to 

the database successfully and its effect can be committed (recorded permanently) to 

the database. 

●​ abort(T): This records that transaction T has been aborted. 

●​ checkpoint: A checkpoint is a mechanism where all the previous logs are removed 

from the system and stored permanently in a storage disk. Checkpoint declares a 

point before which the DBMS was in a consistent state, and all the transactions were 

committed. 

 



A transaction T reaches its commit point when all its operations that access the 

database have been executed successfully i.e. the transaction has reached the point 

at which it will not abort (terminate without completing). Once committed, the 

transaction is permanently recorded in the database. Commitment always involves 

writing a commit entry to the log and writing the log to disk. At the time of a system 

crash, the item is searched back in the log for all transactions T that have written a 

start_transaction(T) entry into the log but have not written a commit(T) entry yet; 

these transactions may have to be rolled back to undo their effect on the database 

during the recovery process. 

●​ Undoing: If a transaction crashes, then the recovery manager may undo transactions 

i.e. reverse the operations of a transaction. This involves examining a transaction for 

the log entry write_item(T, x, old_value, new_value) and setting the value of item x in 

the database to old-value. There are two major techniques for recovery from 

non-catastrophic transaction failures: deferred updates and immediate updates. 

●​ Deferred Update: This technique does not physically update the database on disk 

until a transaction has reached its commit point. Before reaching commit, all 

transaction updates are recorded in the local transaction workspace. If a transaction 

fails before reaching its commit point, it will not have changed the database in any 

way so UNDO is not needed. It may be necessary to REDO the effect of the operations 

that are recorded in the local transaction workspace, because their effect may not yet 

have been written in the database. Hence, a deferred update is also known as the 

No-undo/redo algorithm. 

●​ Immediate Update: In the immediate update, the database may be updated by some 

operations of a transaction before the transaction reaches its commit point. However, 

these operations are recorded in a log on disk before they are applied to the 

database, making recovery still possible. If a transaction fails to reach its commit 

point, the effect of its operation must be undone i.e. the transaction must be rolled 

back hence we require both undo and redo. This technique is known as undo/redo 

algorithm. 

●​ Caching/Buffering: In this one or more disk pages that include data items to be 

updated are cached into main memory buffers and then updated in memory before 

being written back to disk. A collection of in-memory buffers called the DBMS cache 

is kept under the control of DBMS for holding these buffers. A directory is used to 

keep track of which database items are in the buffer. A dirty bit is associated with 

each buffer, which is 0 if the buffer is not modified else 1 if modified. 

 



●​ Shadow Paging: It provides atomicity and durability. A directory with n entries is 

constructed, where the ith entry points to the ith database page on the link. When a 

transaction began executing the current directory is copied into a shadow directory. 

When a page is to be modified, a shadow page is allocated in which changes are 

made and when it is ready to become durable, all pages that refer to the original are 

updated to refer new replacement page. 

●​ Backward Recovery: The term ” Rollback ” and ” UNDO ” can also refer to backward 

recovery. When a backup of the data is not available and previous modifications need 

to be undone, this technique can be helpful. With the backward recovery method, 

unused modifications are removed and the database is returned to its prior 

condition. All adjustments made during the previous traction are reversed during 

the backward recovery. In other words, it reprocesses valid transactions and undoes 

the erroneous database updates. 

●​ Forward Recovery: “ Roll forward “and ” REDO ” refers to forwarding recovery. 

When a database needs to be updated with all changes verified, this forward 

recovery technique is helpful. Some failed transactions in this database are applied 

to the database to roll those modifications forward. In other words, the database is 

restored using preserved data and valid transactions counted by their past saves. 

Backup Techniques There are different types of Backup Techniques. Some of them 

are listed below. 

●​ Full database Backup: In this full database including data and database, Meta 

information needed to restore the whole database, including full-text catalogs are 

backed up in a predefined time series. 

●​ Differential Backup: It stores only the data changes that have occurred since the 

last full database backup. When some data has changed many times since the last full 

database backup, a differential backup stores the most recent version of the changed 

data. For this first, we need to restore a full database backup. 

●​ Transaction Log Backup: In this, all events that have occurred in the database, like 

a record of every single statement executed is backed up. It is the backup of 

transaction log entries and contains all transactions that had happened to the 

database. Through this, the database can be recovered to a specific point in time. It is 

even possible to perform a backup from a transaction log if the data files are 

destroyed and not even a single committed transaction is lost. 

Savepoint 

 



A SAVEPOINT is used to create a checkpoint within a transaction. We can roll back to a 

specific SAVEPOINT instead of rolling back the entire transaction. This allows us to undo 

part of the transaction rather than the entire transaction. 

Syntax: 

SAVEPOINT SAVEPOINT_NAME; 

Example 

SAVEPOINT SP1; 

//Savepoint created. 

DELETE FROM Student WHERE AGE = 20; 

//deleted 

SAVEPOINT SP2; 

//Savepoint created. 

Output 
 

output 

Explanation: 

From the above example Sample table1, Delete those records from the table which have 

age = 20 and then ROLLBACK the changes in the database by keeping Savepoints. Here SP1 

is first SAVEPOINT created before deletion. In this example one deletion have taken place. 

After deletion again SAVEPOINT SP2 is created. 

ROLLBACK TO SAVEPOINT 

The ROLLBACK TO SAVEPOINT command allows us to roll back the transaction to a specific 

savepoint, effectively undoing changes made after that point. 

Syntax: 

ROLLBACK TO SAVEPOINT SAVEPOINT_NAME; 

Example 

Deletion have been taken place, let us assume that we have changed our mind and decided 

to ROLLBACK to the SAVEPOINT that we identified as SP1 which is before deletion. So, In 

this case the DELETE operation is undone, and the transaction is returned to the state it 

was in at the SP1 savepoint. 

ROLLBACK TO SP1; 

//Rollback completed 

 



Output 
 

output 

RELEASE SAVEPOINT Command 

This command is used to remove a SAVEPOINT that we have created. Once a SAVEPOINT 

has been released, we can no longer use the ROLLBACK command to undo transactions 

performed since the last SAVEPOINT. It is used to initiate a database transaction and 

used to specify characteristics of the transaction that follows. 

Syntax: 

1.​ RELEASE SAVEPOINT SAVEPOINT_NAME 

Example 

●​ Once the savepoint SP2 is released, we can no longer roll back to it. 

2.​ RELEASE SAVEPOINT SP2; -- Release the second savepoint. 

Why Use Transactions in Banking? 

In this case, without a transaction, you risk scenarios where money is deducted from one 

account but not added to the other, leaving the system in an inconsistent state. 

Transactions ensure that such issues are avoided by guaranteeing that both operations 

succeed or fail together. 

 


	Transaction Recovery – Save Points 
	Commit/Redo Recovery Technique 
	Checkpoint Recovery Technique 
	Database Systems 
	Syntax: 
	Output 
	Explanation: 
	ROLLBACK TO SAVEPOINT 
	Syntax: 
	Output 
	RELEASE SAVEPOINT Command 
	Syntax: 
	Why Use Transactions in Banking? 


