

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

1 / 3

DEPARTMENT OF AIML
23CST202- OPERATING SYSTEMS

II YEAR IV SEM AIML-B
UNIT 3-MEMORY MANAGEMENT

TOPIC –PROCESS CREATION

PROCESS CREATION

A process is an instance of a program running, and its lifecycle includes various

stages such as creation, execution, and deletion.

 The operating system handles process creation by allocating necessary resources

and assigning each process a unique identifier.

 Process deletion involves releasing resources once a process completes its

execution.

 Processes are often organized in a hierarchy, where parent processes create child

processes, forming a tree-like structure.

Process Creation

As discussed above, processes in most of the operating systems (both Windows and

Linux) form hierarchy. So a new process is always created by a parent process. The

process that creates the new one is called the parent process, and the newly created

process is called the child process. A process can create multiple new processes

while it’s running by using system calls to create them.

1. When a new process is created, the operating system assigns a unique Process

Identifier (PID) to it and inserts a new entry in the primary process table.

2. Then required memory space for all the elements of the process such as program,

data, and stack is allocated including space for its Process Control Block (PCB).

3. Next, the various values in PCB are initialized such as,

1. The process identification part is filled with PID assigned to it in step (1) and

also its parent’s PID.

2. The processor register values are mostly filled with zeroes, except for the stack

pointer and program counter. The stack pointer is filled with the address of the

stack-allocated to it in step (2) and the program counter is filled with the address

of its program entry point.

3. The process state information would be set to ‘New’.

4. Priority would be lowest by default, but the user can specify any priority during

creation. Then the operating system will link this process to the scheduling

queue and the process state would be changed from ‘New’ to ‘Ready’. Now the

process is competing for the CPU.

5. Additionally, the operating system will create some other data structures such as

log files or accounting files to keep track of process activity.

Understanding System Calls for Process Creation in UNIX Operating System:

https://www.geeksforgeeks.org/process-table-and-process-control-block-pcb/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

2 / 3

Process creation is achieved through the fork() system call. The new process that

gets created is called the child process, and the one that started it (the one that was

already running) is called the parent process. After the fork() call, you end up with

two processes: the parent and the child, both running independently.

 The fork() system call creates a copy of the current process, including all its

resources, but with just one thread.

 The exec() system call replaces the current process’s memory with the code and

data from a specified executable file. It doesn’t return; instead, it “transfers” the

process to the new program.

 The waitpid() function makes the parent process wait until a specific child

process finishes executing.

Process creation in Unix

Example:

int pid = fork();

if (pid == 0)

{

/* Child process */

exec(“foo”);

}

else

{

/* Parent process */

waitpid(pid, &status, options);

}

Understanding System Calls for Process Creation in Windows Operating

System:

In Windows, the system call used for process creation is CreateProcess(). This

function is responsible for creating a new process, initializing its memory, and

loading the specified program into the process’s address space.

https://www.geeksforgeeks.org/fork-system-call/

23CST202-OPERATING SYSTEMS/DR.KIRUBA M/AP/IT/SNSCT

3 / 3

 CreateProcess() in Windows combines the functionality of both

UNIX’s fork() and exec(). It creates a new process with its own memory space

rather than duplicating the parent process like fork() does. It also allows

specifying which program to run, similar to how exec() works in UNIX.

 When you use CreateProcess(), you need to provide some extra details to handle

any changes between the parent and child processes. These details control things

like the process’s environment, security settings, and how the child process

works with the parent or other processes. It gives you more control and

flexibility compared to the UNIX system.

Process Deletion

Processes terminate themselves when they finish executing their last statement, after

which the operating system uses the exit() system call to delete their context. Then

all the resources held by that process like physical and virtual memory, 10 buffers,

open files, etc., are taken back by the operating system. A process P can be

terminated either by the operating system or by the parent process of P.

A parent may terminate a process due to one of the following reasons:

1. When task given to the child is not required now.

2. When the child has taken more resources than its limit.

3. The parent of the process is exiting, as a result, all its children are deleted. This

is called cascaded termination.

A process can be terminated/deleted in many ways. Some of the ways are:

1. Normal termination: The process completes its task and calls an exit() system

call. The operating system cleans up the resources used by the process and

removes it from the process table.

2. Abnormal termination/Error exit: A process may terminate abnormally if it

encounters an error or needs to stop immediately. This can happen through

the abort() system call.

3. Termination by parent process: A parent process may terminate a child

process when the child finishes its task. This is done by the using kill() system

call.

4. Termination by signal: The parent process can also send specific signals

like SIGSTOP to pause the child or SIGKILL to immediately terminate it

https://www.geeksforgeeks.org/virtual-memory-in-operating-system/

	Process Creation
	Understanding System Calls for Process Creation in UNIX Operating System:
	Understanding System Calls for Process Creation in Windows Operating System:

	Process Deletion

