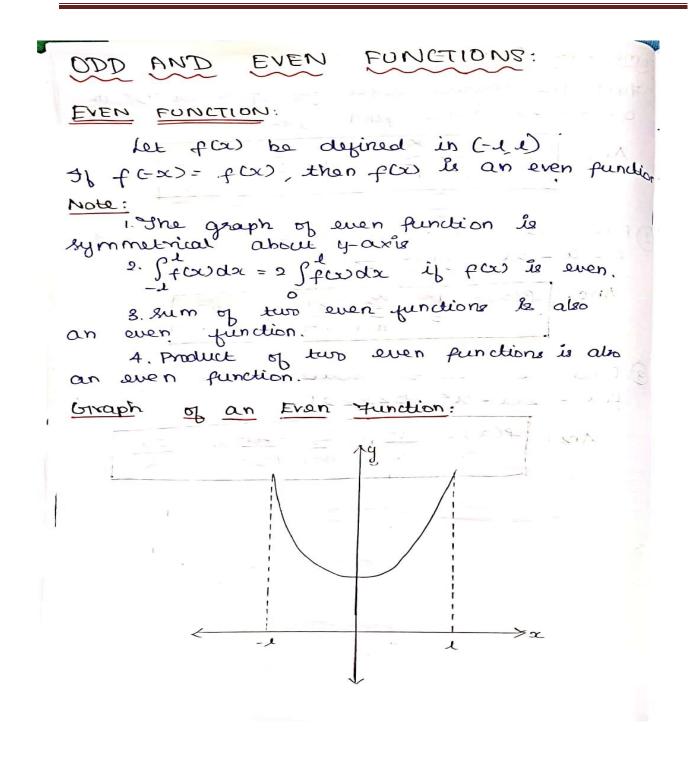


(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai^{ai} Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU



(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai^{uai} Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

ODD EUNCTION: Let for be defined in (-1, 1): J(-x) = - f (x), then for is an odd function ar Note: 1. The graph of odd function is symmetrice about origin. 2. J. for dx = o if for is odd 3. Sum of two odd function is also an odd function. A. Product of two odd function is an even function. function: Odd Graph of an . 7 -1

Mrs.K.BAGYALAKSHMI/AP/MATHS

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai^{ai} Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(2) Find the Fourier series for
$$f(x) = x$$
 is
 $(-1, 1)$ and hence deduce that
 $1 - \frac{1}{3} + \frac{1}{5} - \dots = \frac{31}{4}$
Solution:
 $f(x)$ is defined in $(-1, 1)$
In $(-1, 1)$, check whether $f(x)$ is odd leven.
 $f(x) = x$
 $f(-x) = -x = -f(x)$
 $\therefore f(-x) = -f(x)$
 $= -f(x) = -f(x) = -f(x)$
 $= -2 \int f(x) \sin \frac{n\pi x}{x} dx$
 $= -2 \int f(x) \sin \frac{n\pi x}{x} dx$
 $= -2 \int \frac{1}{x} \int f(x) \cos \frac{n\pi x}{x} dx$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

$$= \frac{-2}{n\pi} \sum_{n=1}^{\infty} \cos n\pi - 5$$

$$= \frac{-2}{n\pi} \sum_{n=1}^{\infty} (-1)^{n}$$
Substitute the values r_{0} by $do 0$.
we get
 $f(x) = \sum_{n=1}^{\infty} \frac{-24}{n\pi} (-1)^{n} \sin \frac{n\pi x}{4} = 3$

$$To \ deduce \ 1 - \frac{1}{5} + \frac{1}{5} - \cdots = \frac{\pi}{4}$$
Put $x = \frac{4}{2}$ in (2) we get
 $f\left(\frac{4}{2}\right) = \sum_{n=1}^{\infty} \frac{-24}{n\pi} (-1)^{n} \sin \frac{n\pi}{2} = 3$

$$To \ find \ f\left(\frac{4}{2}\right):$$
 $\alpha = \frac{4}{2}$ lies inside $(-4, 4)$.
Here $x = \frac{1}{2}$ is a point of continuity (
 $-\frac{f\left(\frac{4}{2}\right) = \frac{2}{n} - \frac{24}{2}$.
(3) $\Rightarrow \frac{4}{2} = \sum_{n=1}^{\infty} -\frac{24}{n\pi} (-1)^{n} \sin \frac{n\pi}{2}$

$$-\frac{24}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin \frac{n\pi}{2} = \frac{4}{2}$$

12

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

$$\sum_{n=1}^{\infty} \frac{(1)^{n}}{n} \sin \frac{n\pi}{2} = \frac{1}{2} \left(\frac{\pi}{-21} \right)$$

$$\sum_{n=1}^{\infty} \frac{(1)^{n}}{n} \sin \frac{n\pi}{2} = \frac{-\pi}{4}$$

$$\frac{(-1)}{n} (1) + 0 + \frac{(-1)}{3} (-1) + \dots = \frac{-\pi}{4}$$
Ans:
$$1 - \frac{1}{3} + \frac{1}{5} - \dots = \frac{\pi}{4}$$
Homework sums:
() Find the fourier series for f(a) = x² in
(-\pi, \pi) and hence deduce
i) $\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{5}$
ii) $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}} - \dots = \frac{\pi^{2}}{5}$
Ans: $f(x) = \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} \frac{4}{n^{2}} (-1)^{n} \cos nx$

(2) Find the Fourier series for

$$f(x) = \int_{1}^{1+\frac{2i}{31}} \frac{1}{3} - \frac{3}{31} dx dx$$
 and hence
 $1 - \frac{x}{31} = 0 dx dx dx$
 $deduce = \frac{1}{1^2} + \frac{1}{3^2} + \dots = \frac{32}{8}$
Ans: $f(x) = \frac{1}{2} + \frac{2}{3^2} + \frac{2}{3^2} + \frac{4}{3^2 \pi^2} \cos \pi x$