
SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

LEVELS OF TESTING

Testing Strategy

 We begin by ‘testing-in-the-small’ and move toward ‘testing-in-the-large’
 For conventional software

 The module (component) is our initial focus
 Integration of modules follows

 For OO software
 our focus when “testing in the small” changes from an individual module (the

conventional view) to an OO class that encompasses attributes and operations and
implies communication and collaboration

 SOFTWARE TESTING LEVELS are the different stages of the software development
lifecycle where testing is conducted. There are four levels of software testing: Unit >> Integration
>> System >> Acceptance.

SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

Level Summary

Unit Testing A level of the software testing process where individual units of a software
are tested. The purpose is to validate that each unit of the software performs
as designed.

Integration
Testing

A level of the software testing process where individual units are combined
and tested as a group. The purpose of this level of testing is to expose faults
in the interaction between integrated units.

System
Testing

A level of the software testing process where a complete, integrated system
is tested. The purpose of this test is to evaluate the system’s compliance
with the specified requirements.

Acceptance
Testing

A level of the software testing process where a system is tested for
acceptability. The purpose of this test is to evaluate the system’s compliance
with the business requirements and assess whether it is acceptable for
delivery.

1. UNIT TESTING

 A Unit is a smallest testable portion of system or application which can be compiled,
liked, loaded, and executed. This kind of testing helps to test each module separately.

 Unit testing is performed by the respective developers on the individual units of source
code assigned areas.

 The developers use test data that is different from the test data of the quality assurance
team.

 The goal of unit testing is to isolate each part of the program and show that individual
parts are correct in terms of requirements and functionality.

 Initially, tests focus on each component individually, ensuring that it functions properly
as a unit. Hence, the name unit testing. Unit testing makes heavy use of white-box testing
techniques, exercising specific paths in a module's control structure to ensure complete
coverage and maximum error detection.

Unit Test Consideration

 The module interface is tested to ensure that information properly flows into and out of
the program unit under test.

 The local data structure is examined to ensure that data stored temporarily maintains its
integrity during all steps in an algorithm's execution.

 Boundary conditions are tested to ensure that the module operates properly at
boundaries established to limit or restrict processing.

SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

 All independent paths (basis paths) through the control structure are exercised to ensure
that all statements in a module have been executed at least once.

 And finally, all error handling paths are tested.

 Fig: Unit Test Environment

 Each unit/ component is not a stand-alone program, hence driver and/or stub software must
be developed for each unit test.

 The unit test environment is illustrated in Figure. In most applications a driver is nothing
more than a "main program" that accepts test case data, passes such data to the component
(to be tested), and prints relevant results.

 Stubs serve to replace modules that are subordinate (called by) the component to be tested.
A stub or "dummy subprogram" uses the subordinate module's interface, may do minimal
data manipulation, prints verification of entry, and returns control to the module
undergoing testing.

 Drivers and stubs represent overhead. That is, both are software that must be written
(formal design is not commonly applied) but that is not delivered with the final software
product.

 If drivers and stubs are kept simple, actual overhead is relatively low. Unfortunately, many
components cannot be adequately unit tested with "simple" overhead software. In such
cases, complete testing can be postponed until the integration test step (where drivers or
stubs are also used).

2. INTEGRATION TESTING

Integration testing is a systematic technique for constructing the program structure while at
the same time conducting tests to uncover errors associated with interfacing. The objective is
to take unit tested components and build a program structure that has been dictated by design.
Incremental Approach is carried out by using dummy programs called Stubs and Drivers.
Stubs and Drivers do not implement the entire programming logic of the software module but
just simulate data communication with the calling module.

SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

Non- Incremental Integration/ big bang" approach.

 Here all component are integrated together at once and then tested.

 The entire program is tested as a whole. And chaos usually results!

 A set of errors is encountered. Correction is difficult because isolation of causes is
complicated by the vast expanse of the entire program. Once these errors are corrected,
new ones appear and the process continues in a seemingly endless loop.

Incremental Approach: which is further divided into the following

 Top Down Approach
 Bottom Up Approach
 Sandwich Approach - Combination of Top Down and Bottom Up

 The program is constructed and tested in small increments, where errors are easier to isolate

and correct; interfaces are more likely to be tested completely; and a systematic test approach

may be applied

 i) Top-down Integration

Modules are integrated by moving downward through the control hierarchy, beginning with
the main control module (main program). Modules subordinate (and ultimately subordinate)
to the main control module are incorporated into the structure in either a depth-first or breadth-
first manner.

SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs are substituted for all components
directly subordinate to the main control module.

2. Depending on the integration approach selected (i.e., depth or breadth first), subordinate
stubs are replaced one at a time with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real component. 5.
Regression testing may be conducted to ensure that new errors have not been introduced.

The process continues from step 2 until the entire program structure is built.

Advantages:

 Fault Localization is easier.
 Possibility to obtain an early prototype.
 Critical Modules are tested on priority; major design flaws could be found and fixed first.
Disadvantages:

 Needs many Stubs.
 Modules at a lower level are tested inadequately.

ii) Bottom Up Integration

 Bottom-up Integration begins construction and testing with atomic modules (i.e.,
components at the lowest levels in the program structure).

 Because components are integrated from the bottom up, processing required for
components subordinate to a given level is always available and the need for stubs is
eliminated.

SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

A bottom-up integration strategy may be implemented with the following steps:

1. Low-level components are combined into clusters (sometimes called builds) that perform a
specific software subfunction.

2. A driver (a control program for testing) is written to coordinate test case input and output.
3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program structure.

Advantages:

 Fault localization is easier.
 No time is wasted waiting for all modules to be developed unlike Big-bang approach

Disadvantages:

 Critical modules (at the top level of software architecture) which control the flow of
application are tested last and may be prone to defects.

 An early prototype is not possible

(iii) Sandwich Testing

In the sandwich/hybrid strategy is a combination of Top Down and Bottom up approaches.
Here, top modules are tested with lower modules at the same time lower modules are
integrated with top modules and tested. This strategy makes use of stubs as well as drivers.

SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

Regression testing

 Regression testing is the re-execution of some subset of tests that have already been
conducted to ensure that changes have not propagated unintended side effects

 Whenever software is corrected, some aspect of the software configuration (the program,
its documentation, or the data that support it) is changed.

 Regression testing helps to ensure that changes (due to testing or for other reasons) do not
introduce unintended behavior or additional errors.

 Regression testing may be conducted manually, by re-executing a subset of all test cases
or using automated capture/playback tools.

 The intent of regression testing is to ensure that a change, such as a bug fix
should not result in another fault being uncovered in the application.

Smoke Testing

 Smoke Testing Smoke testing is an integration testing approach that is commonly used
when “shrinkwrapped” software products are being developed. Software components that
have been translated into code are integrated into a “build.”

o A build includes all data files, libraries, reusable modules, and engineered
components that are required to implement one or more product functions.

o A series of tests is designed to expose errors that will keep the build from properly
performing its function.

 The intent should be to uncover “show stopper” errors that have the highest
likelihood of throwing the software project behind schedule.

o The build is integrated with other builds and the entire product (in its current form)
is smoke tested daily.

 The integration approach may be top down or bottom up.

3. SYSTEM TESTING

System testing tests the system as a whole. Once all the components are integrated, the

application as a whole is tested rigorously to see that it meets the specified Quality Standards.

This type of testing is performed by a specialized testing team.

SNSCT Software Engineering / Unit IV/ Dr.LMN [Type here]

System testing is important because of the following reasons −

 System testing is the first step in the Software Development Life Cycle, where the

application is tested as a whole.

 The application is tested thoroughly to verify that it meets the functional and technical

specifications.

 The application is tested in an environment that is very close to the production

environment where the application will be deployed.

 System testing enables us to test, verify, and validate both the business requirements as

well as the application architecture.

4. ACCEPTANCE TESTING

Configuration Review

 An important element of the validation process is a configuration review.
 The intent of the review is to ensure that all elements of the software configuration have

been properly developed, are catalogued, and have the necessary detail to support phase
of the software life cycle.

 The configuration review, sometimes called an audit

When custom software is built for one customer, a series of acceptance tests are conducted to
enable the customer to validate all requirements. Conducted by the end user rather than
software engineers, an acceptance test can range from an informal "test drive" to a planned
and systematically executed series of tests

Alpha Testing

 The alpha test is conducted at the developer's site by a customer.
 The software is used in a natural setting with the developer "looking over the shoulder" of

the user and recording errors and usage problems.
 Alpha tests are conducted in a controlled environment.

Beta Testing

 The beta test is conducted at one or more customer sites by the end-user of the software.
 Unlike alpha testing, the developer is generally not present. Therefore, the beta test is a

"live" application of the software in an environment that cannot be controlled by the
developer.

 The customer records all problems (real or imagined) that are encountered during beta
testing and reports these to the developer at regular intervals.

 As a result of problems reported during beta tests, software engineers make modifications
and then prepare for release of the software product to the entire customer base.

