Algorithms: K Nearest Neighbors

Simple Analogy..

• Tell me about your friends(*who your* neighbors are) and I will tell you who you are.

Instance-based Learning

KNN – Different names

- K-Nearest Neighbors
- Memory-Based Reasoning
- Example-Based Reasoning
- Instance-Based Learning
- Lazy Learning

What is KNN?

- A powerful classification algorithm used in pattern recognition.
- K nearest neighbors stores all available cases and classifies new cases based on a *similarity measure*(e.g distance function)
- One of the top data mining algorithms used today.
- A non-parametric lazy learning algorithm (An Instancebased Learning method).

KNN: Classification Approach

- An object (a new instance) is classified by a majority votes for its neighbor classes.
- The object is assigned to the most common class amongst its K nearest neighbors.(*measured by a distant function*)

Distance Measure

Distance measure for Continuous Variables

Distance Between Neighbors

Calculate the distance between new example
(E) and all examples in the training set.

- Euclidean distance between two examples.
 X = [x₁,x₂,x₃,...,x_n]
 Y = [y₁,y₂,y₃,...,y_n]
 - The Euclidean distance between X and Y is defined as: $D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$

K-Nearest Neighbor Algorithm

- All the instances correspond to points in an n-dimensional feature space.
- Each instance is represented with a set of numerical attributes.
- Each of the training data consists of a set of vectors and a class label associated with each vector.
- Classification is done by comparing feature vectors of different K nearest points.
- Select the K-nearest examples to E in the training set.
- Assign E to the most common class among its K-nearest neighbors.

3-KNN: Example(1)

Customer	Age	Income	No. credit cards	Class	Distance from John
George	35	35K	3	No	
Rachel	22	50K	2	Yes	
Steve	63	200K	1	No	
Tom	59	170K	1	No	
Anne	25	40K	4	Yes	
John	37	50K	2		

How to choose K?

- If K is too small it is sensitive to noise points.
- Larger K works well. But too large K may include majority points from other classes.

• Rule of thumb is K < sqrt(n), n is number of examples.

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

KNN Feature Weighting

• Scale each feature by its importance for classification

$$D(a,b) = \sqrt{\sum_{k} w_k (a_k - b_k)^2}$$

- Can use our prior knowledge about which features are more important
- Can learn the weights w_k using cross-validation (to be covered later)

Feature Normalization

- Distance between neighbors could be dominated by some attributes with relatively large numbers.
 - e.g., income of customers in our previous example.

$$a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i}$$

- Arises when two features are in different scales.
- Important to normalize those features.
 - Mapping values to numbers between 0 1.

Nominal/Categorical Data

- Distance works naturally with numerical attributes.
- Binary value categorical data attributes can be regarded as 1 or 0.

KNN Classification

KNN Classification – Distance

Age	Loan	Default	Distance				
25	\$40,000	N	102000				
35	\$60,000	N	82000				
45	\$80,000	Ν	62000				
20	\$20,000	Ν	122000				
35	\$120,000	Ν	22000				
52	\$18,000	Ν	124000				
23	\$95,000	Y	47000				
40	\$62,000	Y	80000				
60	\$100,000	Y	42000				
48	\$220,000	Y	78000				
33	\$150,000	Υ <	8000				
48	\$142,000	?					
Euclidean Distance $D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$							

KNN Classification – Standardized Distance

Age	Loan	Default	Distance					
0.125	0.11	N	0.7652					
0.375	0.21	Ν	0.5200					
0.625	0.31	— N <	0.3160					
0	0.01	N	0.9245					
0.375	0.50	N	0.3428					
0.8	0.00	N	0.6220					
0.075	0.38	Y	0.6669					
0.5	0.22	Y	0.4437					
1	0.41	Y	0.3650					
0.7	1.00	Y	0.3861					
0.325	0.65	Y	0.3771					
0.7	0.61	→?						
$\frac{1}{X - Min}$								
Standa	standaut $\Lambda_s = \frac{1}{Max - Min}$							

Strengths of KNN

- Very simple and intuitive.
- Can be applied to the data from any distribution.
- Good classification if the number of samples is large enough.

Weaknesses of KNN

- Takes more time to classify a new example.
 - need to calculate and compare distance from new example to all other examples.
- Choosing k may be tricky.
- Need large number of samples for accuracy.