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Overtfitting

« When learning a model we have a set of data
(training set) that we use to learn the model
parameters

e The evaluation of the model needs to happen out-
of-sample, i.e., on a different set that was not used
for learning model parameters

« One of the most common problems during
training is tying the model to the training set

— Overfitting
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Overtfitting

« When a model is over fitted it is not expected to
perform well to new data

— It is not generalizable
e Overtfitting occurs when the model chosen is too

complex that ends up describing the noise in the
data instead of the trend

— E.g., too many parameters relative to the size of the
training dataset

— An over fitted model memorizes the training instances
and does not learn the general trend in them
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Overtfitting

e In aregression model the complexity of the model
is captured by the number of parameters

— If there are n data points in the training set and the
number of parameters is also n, then the fitted model
line will go through all of the points in the training set

— Even if we only have one independent variable, we
can still have n > 1 parameters for the model through
polynomial regression: y = ag + a;x + a,x? + - +
a,x"+e
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Overtfitting

« What is the relationship between number of Pro
Bowl appearances for an NFL player and his draft
order?
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Data: https://www.kaggle.com/ronaldjgrafjr/nfl-draft-outcomes/version/1
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Underfitting

e One might face the opposite problem —
underfitting

— The model is too simplistic to capture any usetful
information in the data
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Occam’s razor

« When there are two explanations for an
observation, the simpler is usually better

e In modeling this means that between two model
hypothesis the simpler is preferable

— The more complex a model is the more probable it is
not true, and, thus we have overtfitting
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Bias-Variance Tradeoff

e Model complexity and the Occam’s razor principle
can be further explored with the bias-variance
tradeoff for a model

e Let’s consider a regression model and its
evaluation through the mean squared error

(MSE):= 2L, (i = 91)?

e There are two elements that contribute to this
error (apart from the inherent noise)
— Model bias

. MSE = bias? + variance + €
- Model variance
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Bias-Variance Tradeoff

o If we want to minimize MSE, we need to minimize
both bias and variance

— However, when bias gets smaller, variance increases
and vice versa

« A model that is underfitted has high bias

— Misses relevant relations between the independent
variables and the response variable

— Bias is reduced by increasing model complexity
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Bias-Variance Tradeoff

o If we want to minimize MSE, we need to minimize
both bias and variance

— However, when bias gets smaller, variance increases
and vice versa

« A model that is overtfitted has high variance

— The model captures the noise in the training data
instead of the trend

— Variance is reduced by decreasing model complexity
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Bias-Variance Tradeoff

Total Error

Variance

Optimum Model Complexity

Error
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Model Complexity
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Model Selection

« To avoid overfitting and pick the best possible model we
need three sets:

— Training set: Identify the weights of different regression
models by minimizing the (squared) error on the training set

 Different regression models can include linear-vs-polynomial
regression, different set of features etc.

— Validation set: Evaluate the performance of the different
regression models identified via training & pick the best

— Test set: Evaluate the performance of the model chosen from
the validation set - this is the expected performance for the
model
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Regularization

« In order to avoid overfitting we can slightly alter
the optimization problem we have to solve for
training the model

— Implicitly constraint the values that the model
parameters can take

« Key idea: Penalize overly complicated answers

— Extreme curves/models typically require extreme
values - susceptible to high variance

N
min » (y; —a' - x;)* +Af (a)
in).
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Regularization

« The regularization term can take different forms

f(a) = ||lal|5 Ridgeregression
f(a) = ||a||; Lassoregression
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Ridge Regression

« The solution obtained depends on the shrinkage
parameter A

— A controls the size of the coefficients, i.e., the amount
of regularization

— Reducing A leads to solutions closer to the least
squares (A=0)

— Increasing A will give us an intercept only

« How to choose A?

— Use a validation set!
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Lasso Regression

« Very similar to ridge regression but with subtle and important
differences

— The optimization problem is not linear anymore
« Ridge regression forced the square of the coefficients to be less
than a fixed value

— This shrinks the size of the coefficients but does not set any of them
exactly equal to o

e Lasso forces the sum of the absolute values of the coetficients to
be less than a fixed value

— This can force some of the coefficients to be equal to 0 = essentially this
chooses a simpler model that does not include these features
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Model selection example

« Let’s consider NBA team ratings

« We have seen that we can build a simple
regression rating by minimizing the sum of the
squared differences of the actual and predicted
score differential

« What are some alternatives?

— Rergularization (both ridge and lasso)

« How can we choose among the three?

— Model selection!
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Model selection example

Team No@egularization Ridge Lasso

Atlanta@Hawks -5.243140245 -2.0562291 -4.3249679

Boston@eltics 3.856650794 1.6242642 3.26436923 —

BrooklyniNets -4.208863962 -1.701494 -3.4989667 )\—100

Charlotte@ornets -0.533159455 -0.2522544 0.00032652

Chicago®ulls -5.682990076 -2.3266832 -4.879608 R R

Cleveland®Tavaliers -0.260973016 -0.0530343 0.00019336 Y N t th h k g f
DallasiMavericks -2.044925396 -0.9574353 -1.5515693 O lce e S rln a e O
DenveriNuggets 1.160528605 0.46653658 0.52620444 ° ° ®

Detroit@®istons -1.006147943 -0.4221928 -0.4287926 the CoeffICIentS ].n the
GoldenBtate@Varriors 8.077495223 3.20263193 7.30864545 N o
HoustonRockets 8.962682316 3.62637896 8.26129563 1 d

Indiana@acers 0.824543413 0.49708523 0.36985976 regu arlze regreSSIOnS
LosBAngeleslippers 1.070307928 0.45459214 0.458719

LosfAngelesflakers -1.453617886 -0.5765 -0.811317

MemphisEGrizzlies -4.915058078 -2.0645623 -4.1691074 For 1aSSO, a feW

MiamifHeat 0.171037061 0.10242633 0.00191281 o o

Milwaukee®ucks -0.606079482 -0.2400093 -0.0001204 ff t h b
MinnesotafTimberwolves 2.732240184 1.07748441 2.06317797 Coe ICIen S ave een
Newrleans®Pelicans 0.461259049 0.18946809 0.21150404

New® orkEnicks -3.378411257 -1.3762296 -2.6505121 Shrunk almOSt all the
OklahomatTityfrhunder 2.824586502 1.19360069 2.2265779

OrlandoMagic -4.267844453 -1.6897891 -3.5112646 t ( g

Philadelphia@6ers 2.769041804 1.01520704 2.0225851 Way O O €. *)

Phoenix®Buns -8.555117647 -3.5410105 -7.7856664

Portland® railBlazers 2.152887726 0.92334278 1.56961878 Cleveland and

SacramentoXings -7.593330583 -3.1265078 -6.8146881 R

SanBntonioBpurs 2300144236 0.97229131 1.70809857 M 1 k )

TorontoRaptors 8.238598805 3.41081269 7.62263935 1 Wua ee

Utah@azz 2.925182942 1.08682161 2.18062719

Washington@Vizards 1.22247289 0.54098773 0.6302253
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Model selection example

No#egularization Ridge Lasso
TrainAVISE 146.2844626 159.4338315 147.1360025
Validation@MSE 132.9994492 143.751361 134.5141575

TestverageIMSE 241.265375 -
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Descriptive & predictive models

« Many times the two are confused and assumed to
be the same

. tell us what has happened

e Predictive models tell us what might happen

<)

A
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Descriptive models

« Descriptive models and analytics in general help
us understand what has happened in the

« They present the main features of the data

— A summary of the data

— Clustering is most probably the best example

« Data that are generated from a good descriptive
model will have the same characteristics as the
real data
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Descriptive models

« Descriptive models can be as simple as a kernel
density estimation

— Mutlivariate or univariate

— Parametric or non-parametric

« For example, the Iris dataset includes information
from 50 samples of the Iris flower

— Length and width of sepals and petals
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Descriptive models

« What is the distribution of the flower’s sepal width
and length for the different species in the dataset?

Setosa

Sepal Width
sepal_length

-
-

T T T T T T
2.0 2.5 3.0 3.5 4.0 4.5
sepal_width

Sepal Length
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Descriptive models

« What is the distribution of the flower’s petal width
and length for the different species in the dataset?
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Descriptive models

A field where the distinction is clear is sports

« Descriptive models describe how a player
performed over the season

— E.g., used for end-of-season awards (MVP etc.)

« Predictive models aim at projecting future player
performance

— E.g., for player trades and acquisition
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Descriptive models

« How can we quantify the contributions of a
basketball player to his team during the past
season?

« Typical way to do so is with the +/- metric

— Captures the point margin for the team when the
player is on the field

— This point margin can then be translated to wins-
contributed
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Plus-Minus (+/-)

? ﬁ? ? ? Points scored: s;

@ ®  Points allowed: a,

®:  Points allowed: a,

?

?
@ ® Points scored: s, =
- Z(Si - a;)
=

ﬁ? ? ‘ Points scored: s,

® ®  Points allowed: a,
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Adjusted +/-

« Controls for the presence of other players on the
court

— Both offense and defense
« Each stint is a data point

— DV: PM/possession

— IVs: Dummy variables for all players

« 1 for home team players in the stint, -1 for visiting team
players in the stint and o for the rest
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Adjusted +/-

 Pass all the stints through a linear regression

« The coefficient for each player a. is the adjusted
plus-minus of the player

Yy =axq1 t+axqt...ta, x, + €
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Adjusted +/-
Team 1/Us (P1-P5): Players 1 through 9

. Player Adjusted®-/
Team 2/Them (P6-P10): Players 10 through 18 Y .
1] 12.78637207
. . . 21 2.919687658
Stints are full games (i.e., 48 minutes) N [panstey
41 -10.09502237
Assume no home edge (neutral court) N esssoad
Game Result P1|P2|P3|P4 P5|P6|P7 |P8 P9 P10 6l 0.878532834
R T | 1ovsrose
3 4l 1] 9| 2| 8] 4|15 14| 10[17] 13 8] -6.064612857
4 29| 1| 6| 5| 3| 2|16| 17|18| 14| 11 9] 5.972176048
5 3] 9| 7| 1| s| 6] 17| 15/ 12]18] 10 20 10} 16.90654413
6 12y 7| 2| 5| 1| 4|17 11)15|16| 18 5 10 111 -13.07998337
7 5| 6| 5 8 9] 1/13] 16|12/ 15| 10|asz . Nz
8 32| 4| 2| 9 5| 3|17 12| 10| 18] 15 m‘;n z (2 , Apj(i) z , aP}(l)) 2 ClEEe
9 18] 8| 3| 9| 1] 7/17| 16/ 15/14] 11 i—1 J=1 J=6 13] -8.991225193
10 17| 1| 2| 9| 6| 4|13] 16/ 10| 11| 18 14] -6.212323616
11 11| 7] 3| 2| s| 6| 14| 17]15]12] 15 151 7.866337403
ral 2o 4l s o[ o s[1s[ 13l 1a 1o 18 16| 1809264884
14 17| 1| 8| 4| 2| 7/13] 12/ 14|17] 18 171 0.008932283
15 ol 6 9| 8 7/10/ 15| 12| 10| 17| 14 18] -1.200664607
16 70 6| 3| 2| 1| 8/17] 18/ 16| 14| 10
17 9| 3| 2| s| 6| 7|13 16|14/ 10| 11
18 24| 1| 7| 6| 7| 4| 18] 1318/ 15| 11
19 18| 1| 2| s| 8| 6|14 13| 12]15| 18
20 24| 2| a| 3| 8] s|11] 18/ 16|17 10
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Adjusted +/-

e P1has an adjusted +/- of +12.8 points

— Whenever P1 is on the court his team is expected to
outscore the opponent +12.8 points/game

e Adjusted +/- is not stable from season to season

— Cannot be used to predict a players future +/-

 Itis a descriptive metric!

— Assignment of credit
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Predictive models

« Predictive models and analytics in general aim at
forecasting the future

— These forecasts are probabilistic

« Predictive models do not identify causes!

« They are similar to descriptive models in the sense
that they are looking for patterns in past data, but
these patterns need to be persistent to provide
predictive power
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Predictive models

« For predictive models is absolutely crucial to
examine their quality out-of-sample

« We need to make sure that the patterns identified
from the training set are generalizable

— Models need to be evaluated regularly to ensure they
are still predictive



School of Computing &

University of Pittsburgh

Information

Predictive models: example

« While the adjusted +/- that we saw earlier is a
descriptive model, teams are certainly interested
in a predictive version of it

— Regularization can help

« Ridge regression is usually used to improve the
out-of-sample predictive power of the model

20
mjny(y% Apj(i) — 710 apj(i))’
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Predictive models: example

« Now in our case with this toy-
example we cannot really make a
meaningful evaluation of the
predictive power since we have
very few data (and artificially
generated) data

« However, it is worth noting the
shrinkage of the coefficients as
compared to the non-regularized
version

Player

RAdjusted®/

7.76836091
0.136819927
-5.415001027
-4.370679634
-0.191613197
3.282882849
1.320318543
-3.645487267
2.987361165
12.0503124
-7.565657477
3.412795014
-6.42204394
-6.959639575
4.847689719
-0.266711362
1.767711392
-2.737418437




