

INFSCI 0530: Decision Making in Sports

Fall 2021

Overfitting

- When learning a model we have a set of data (training set) that we use to learn the model parameters
- The evaluation of the model needs to happen outof-sample, i.e., on a different set that was not used for learning model parameters
- One of the most common problems during training is tying the model to the training set
 - Overfitting

Overfitting

- When a model is over fitted it is not expected to perform well to new data
 - It is not generalizable
- Overfitting occurs when the model chosen is too complex that ends up describing the noise in the data instead of the trend
 - E.g., too many parameters relative to the size of the training dataset
 - An over fitted model *memorizes* the training instances and does not learn the general trend in them

School of Computing & Information

Overfitting

Football player ?

- No
- Yes

Overfitting

- In a regression model the complexity of the model is captured by the number of parameters
 - If there are n data points in the training set and the number of parameters is also n, then the fitted model line will go through all of the points in the training set
 - Even if we only have one independent variable, we can still have n > 1 parameters for the model through polynomial regression: $y = a_0 + a_1x + a_2x^2 + \dots + a_nx^n + \varepsilon$

Overfitting

• What is the relationship between number of Pro Bowl appearances for an NFL player and his draft order?

University of Pittsburgh

School of Computing & Information

Underfitting

- One might face the opposite problem underfitting
 - The model is too simplistic to capture any useful information in the data

Occam's razor

- When there are two explanations for an observation, the simpler is *usually* better
- In modeling this means that between two model hypothesis the simpler is preferable
 - The more complex a model is the more probable it is not true, and, thus we have overfitting

- Model complexity and the Occam's razor principle can be further explored with the bias-variance tradeoff for a model
- Let's consider a regression model and its evaluation through the mean squared error $(MSE):\frac{1}{N}\sum_{i=1}^{N}(y_i \hat{y_i})^2$
- There are two elements that contribute to this error (apart from the inherent noise)
 - Model bias
 - Model variance

$$MSE = bias^2 + variance + \varepsilon$$

- If we want to minimize MSE, we need to minimize both bias and variance
 - However, when bias gets smaller, variance increases and vice versa
- A model that is underfitted has high bias
 - Misses relevant relations between the independent variables and the response variable
 - Bias is reduced by increasing model complexity

- If we want to minimize MSE, we need to minimize both bias and variance
 - However, when bias gets smaller, variance increases and vice versa
- A model that is overfitted has high variance
 - The model captures the noise in the training data instead of the trend
 - Variance is reduced by decreasing model complexity

Model Selection

- To avoid overfitting and pick the *best* possible model we need three sets:
 - Training set: Identify the weights of different regression models by minimizing the (squared) error on the training set
 - Different regression models can include linear-vs-polynomial regression, different set of features etc.
 - Validation set: Evaluate the performance of the different regression models identified via training & pick the best
 - Test set: Evaluate the performance of the model chosen from the validation set → this is the expected performance for the model

Model Selection

Regularization term

Regularization

- In order to avoid overfitting we can slightly alter the optimization problem we have to solve for training the model
 - Implicitly constraint the values that the model parameters can take
- Key idea: Penalize overly complicated answers
 - Extreme curves/models typically require extreme values → susceptible to high variance

$$\min_{\alpha} \sum_{i=1}^{N} (y_i - \alpha^T \cdot x_i)^2 + \lambda f(\alpha)$$

Regularization

• The regularization term can take different forms

$$f(\boldsymbol{\alpha}) = \|\boldsymbol{\alpha}\|_{2}^{2} \quad Ridge \ regression$$
$$f(\boldsymbol{\alpha}) = \|\boldsymbol{\alpha}\|_{1} \quad Lasso \ regression$$

Ridge Regression

- The solution obtained depends on the shrinkage parameter $\boldsymbol{\lambda}$
 - λ controls the size of the coefficients, i.e., the amount of regularization
 - Reducing λ leads to solutions closer to the least squares (λ =0)
 - Increasing λ will give us an intercept only
- How to choose λ ?
 - Use a validation set!

Lasso Regression

- Very similar to ridge regression but with subtle and important differences
 - The optimization problem is not linear anymore
- Ridge regression forced the square of the coefficients to be less than a fixed value
 - This shrinks the size of the coefficients but does not set any of them exactly equal to o
- Lasso forces the sum of the absolute values of the coefficients to be less than a fixed value
 - This can force some of the coefficients to be equal to o → essentially this chooses a simpler model that does not include these features

Model selection example

- Let's consider NBA team ratings
- We have seen that we can build a simple regression rating by minimizing the sum of the squared differences of the actual and predicted score differential
- What are some alternatives?
 - Rergularization (both ridge and lasso)
- How can we choose among the three?
 - Model selection!

Model selection example

Team	No regularization	Ridge	Lasso
Atlanta Hawks	-5.243140245	-2.0562291	-4.3249679
Boston Celtics	3.856650794	1.6242642	3.26436923
Brooklyn Nets	-4.208863962	-1.701494	-3.4989667
Charlotte Hornets	-0.533159455	-0.2522544	0.00032652
Chicago Bulls	-5.682990076	-2.3266832	-4.879608
Cleveland Cavaliers	-0.260973016	-0.0530343	0.00019336
Dallas Mavericks	-2.044925396	-0.9574353	-1.5515693
Denver Nuggets	1.160528605	0.46653658	0.52620444
Detroit Pistons	-1.006147943	-0.4221928	-0.4287926
Golden State Warriors	8.077495223	3.20263193	7.30864545
Houston Rockets	8.962682316	3.62637896	8.26129563
Indiana Pacers	0.824543413	0.49708523	0.36985976
Los Angeles Clippers	1.070307928	0.45459214	0.458719
Los Angeles Lakers	-1.453617886	-0.5765	-0.811317
Memphis Grizzlies	-4.915058078	-2.0645623	<mark>-4.1691074</mark>
Miami Heat	0.171037061	0.10242633	0.00191281
Milwaukee Bucks	-0.606079482	-0.2400093	-0.0001204
Minnesota Timberwolves	2.732240184	1.07748441	2.06317797
New Orleans Pelicans	0.461259049	0.18946809	0.21150404
New York Knicks	-3.378411257	-1.3762296	-2.6505121
Oklahoma City Thunder	2.824586502	1.19360069	2.2265779
Orlando Magic	-4.267844453	-1.6897891	-3.5112646
Philadelphia 76ers	2.769041804	1.01520704	2.0225851
Phoenix Suns	-8.555117647	-3.5410105	-7.7856664
Portland Trail Blazers	2.152887726	0.92334278	1.56961878
Sacramento Kings	-7.593330583	-3.1265078	-6.8146881
San Antonio Spurs	2.300144236	0.97229131	1.70809857
Toronto Raptors	8.238598805	3.41081269	7.62263935
Utah Jazz	2.925182942	1.08682161	2.18062719
Washington Wizards	1.22247289	0.54098773	0.6302253

λ=100

- Notice the shrinkage of the coefficients in the regularized regressions
- For lasso, a few coefficients have been shrunk almost all the way to 0 (e.g., Cleveland and Milwuakee)

Model selection example

		No regularization	Ridge	Lasso
--	--	-------------------	-------	-------

Train MSE 146.2844626	159.4338315	147.1360025
-----------------------	-------------	-------------

Validation MSE	132.9994492	143.751361	134.5141575
----------------	-------------	------------	-------------

Test average MSE	241.265375 -	-
------------------	--------------	---

Descriptive & predictive models

- Many times the two are confused and assumed to be the same
- Descriptive models tell us *what has happened*
- Predictive models tell us *what might happen*

- Descriptive models and analytics in general help us understand what has happened in the past
- They present the main *features* of the data
 - A summary of the data
 - Clustering is most probably the best example
- Data that are generated from a *good* descriptive model will have the same characteristics as the real data

- Descriptive models can be as simple as a kernel density estimation
 - Mutlivariate or univariate
 - Parametric or non-parametric
- For example, the Iris dataset includes information from 50 samples of the Iris flower
 - Length and width of sepals and petals

• What is the distribution of the flower's sepal width and length for the different species in the dataset?

• What is the distribution of the flower's petal width and length for the different species in the dataset?

- A field where the distinction is clear is sports
- Descriptive models describe how a player performed over the season
 - E.g., used for end-of-season awards (MVP etc.)
- Predictive models aim at projecting future player performance
 - E.g., for player trades and acquisition

- How can we quantify the contributions of a basketball player to his team during the past season?
- Typical way to do so is with the +/- metric
 - Captures the point margin for the team when the player is on the field
 - This point margin can then be translated to winscontributed

University of Pittsburgh

Plus-Minus (+/-)

Points scored: s_1 – Points allowed: a_1

Points scored: s_2 Points allowed: a_2 $-\sum_{i=1}^n (s_i - a_i)$

Points scored: s_n Points allowed: a_n

Plus-Minus (+/-)

Adjusted +/-

- Controls for the presence of other players on the court
 - Both offense and defense
- Each *stint* is a data point
 - DV: PM/possession
 - IVs: Dummy variables for all players
 - 1 for home team players in the stint, -1 for visiting team players in the stint and 0 for the rest

Adjusted +/-

• Pass all the stints through a linear regression

- The coefficient for each player α_i is the adjusted plus-minus of the player

$$y = a_1 x_1 + a_1 x_1 + \ldots + a_r x_r + \varepsilon$$

Player

Adjusted +/

12.78637207 2.919687658

6.185552324

-10.09502237

Adjusted +/-

Team 1/Us (P1-P5): Players 1 through 9 Team 2/Them (P6-P10): Players 10 through 18

Stints are full games (i.e., 48 minutes) Assume no home edge (neutral court)

/ 100								, a	90				5	-0.121270455
Game	Result	Ρ1	P2	Ρ3	Ρ4	Ρ5	P6	Ρ7	P8	P9	P10		6	0.878532834
1	-13	4	1	7	5	2	15	16	10	17	14		7	1.917570362
2	19	1	6	2	5	4	11	17	14	15	18		8	-6 064612857
3	-4	1	9	2	8	4	15	14	10	17	13		0	5 072176048
4	29	1	6	5	3	2	16	17	18	14	11		3	3.972170048
5	-3	9	/	1	5	6	1/	15	12	18	10	20	10	16.90654413
6	12	/	2	5	1	4	1/	11	15	16	18	$\nabla \cdot \nabla^5 = \nabla^{10}$	11	-13.07998337
7	-5	6	5	8	9	1	13	16	12	15	10	min $()$ $a_{Pi(i)} - ()$ $a_{Pi(i)}$	$()^2$ 12	0.88523712
8	-32	4	2	9	5	3	17	12	10	18	15	$a \underset{i=1}{\checkmark} \underset{j=1}{\checkmark} \underset{i=1}{} \underset{j=0}{} \underset{i=0}{} \underset{j=0}{}$	13	-8.991225193
9	18	0	3	9	1	/	17	16	10	14	10	i=1	14	-6.212323616
10	_11	1 7	2	2	5	4	1/	17	10	12	10		15	7 866227/02
12	-11	7	8	2 1	6	3	19	11	12	17	15		15	7.800337403
12	29	/	5	4 0	2	6	11	13	1/	17	18		16	1.809264884
13	17	1	8		2	7	13	12	14	17	18		17	0.008932283
15	0	6	9	8	7	10	15	12	10	17	14		18	-1.200664607
16	-7	6	3	2	1	8	17	18	16	14	10			
17	9	3	2	5	6	7	13	16	14	10	11			
18	24	1	7	6	7	4	18	13	18	15	11			
19	18	1	2	5	8	6	14	13	12	15	18			
20	-24	2	4	3	8	5	11	18	16	17	10			

Adjusted +/-

- P1 has an adjusted +/- of +12.8 points
 - Whenever P1 is on the court his team is expected to outscore the opponent +12.8 points/game
- Adjusted +/- is not stable from season to season
 - Cannot be used to predict a players future +/-
- It is a descriptive metric!
 - Assignment of credit

Predictive models

- Predictive models and analytics in general aim at forecasting the future
 - These forecasts are probabilistic
- Predictive models do not identify causes!
- They are similar to descriptive models in the sense that they are looking for patterns in past data, **but** these patterns need to be persistent to provide predictive power

Predictive models

- For predictive models is absolutely crucial to examine their quality out-of-sample
- We need to make sure that the patterns identified from the training set are *generalizable*
 - Models need to be evaluated regularly to ensure they are still predictive

Predictive models: example

- While the adjusted +/- that we saw earlier is a descriptive model, teams are certainly interested in a predictive *version* of it
 - Regularization can help
- Ridge regression is usually used to improve the out-of-sample predictive power of the model

$$\min_{a} \sum_{i=1}^{20} \left(\sum_{i=1}^{5} a_{Pj(i)} - \sum_{i=1}^{10} a_{Pj(i)} \right)^{2}$$

Predictive models: example

- Now in our case with this toyexample we cannot really make a meaningful evaluation of the predictive power since we have very few data (and artificially generated) data
- However, it is worth noting the shrinkage of the coefficients as compared to the non-regularized version

Player		RAdjusted +/
	1	7.76836091
	2	0.136819927
	3	-5.415001027
	4	-4.370679634
	5	-0.191613197
	6	3.282882849
	7	1.320318543
	8	-3.645487267
	9	2.987361165
	10	12.0503124
	11	-7.565657477
	12	3.412795014
	13	-6.42204394
	14	-6.959639575
	15	4.847689719
	16	-0.266711362
	17	1.767711392
	18	-2.737418437