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Introduction to Linear Regression

* Linear Regression is a predictive model to map the relation between dependent variable
and one or more independent variables.

» It is a supervised learning method and regression problem which nredicts

Hypothesis line
real valued output. t "

* The predicted output is done by forming Hypothesis based s

Y = 6, + 6,x; ( Single Independent Variable) Error — ¥

Y = 6y + 0,x,+ 0,%x5 +.....4+ 0, x;,, (Multiple Independent Va ) 1 \5redicted output (7)
=Y¥ ,0;x;; Wherexy, =1 ................ (1) @

Where 6; = parameters for i**independent variable(s) 1 }Wal PR LY

For estimation of performance of the linear model, SSE
Squared Sum Error (SSE) = Y¢ (Y — ¥)?

Note: Here, Y is the actual observed output

And, Y is the predicted output.




Model Representation

Training Set

Learning Algorithm

Unknown Independent Value Hypothesis (V) » Estimated Output Value

Fig.1 Model Representation of Linear Regression

Hint: Gradient descent as learning algorithm



How to Represent Hypothesis?

We know, hypothesis is represented by ¥, which can be formulated
depending upon single variable linear regression (Univariate Linear
Regression) or Multi-variate linear regression.

? — 90 + lel
Here, 6, = intercept and 8, = slope= i—i} and x,; = independent variable

Question arises: How do we choose 6,/ values for best fitting hypothesis?
Idea : Choose 6, , 8, sothatY is close to Y for our training examples (X, y)
Objective: min J(6, , 64 ),

Note: J(8, , 8; ) = Cost Function.

Formulation of J(8, , 0, ) = 3 il ?(E)—Y(i))z

Zm

Note: m = No. of instances of dataset



Objective function for linear regression

« The most important objective of linear regression model is to minimize cost function by

choosing a optimal value for 6, , 6.

« For optimization technique, Gradient Descent is mostly used in case of predictive models.

» By taking 8, = 0 and 8, = some random values ( in case of univariate linear regression),

the graph (6, vs J(6, )) gets represented in the form of |

Advantage of Gradient descent in linear regressic

* No scope to stuck in local optima, since there is only

One global optima position where slope(6,) = g/(4,)

(convex graph)
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Normal Distribution N(u, 04)

Estimation of mean (u) and variance (62).
 Let size of data set = n, denoted by y,, y,...... Vo

o Assuming yy, y,...... y,, are independent random variables or Independent Identically
Distributed (iid), they are normally distributed random variables.

» Assuming no independent variables (X), in order to estimate the future value of y we need to find
to find unknown parameters (u & o2).

Concept of Maximum Likelihood Estimation:

 Using Maximum Likelihood Estimation (MLE) concept, we are trying to find the optimal value for
value for the mean (u) and standard deviation (o) for distribution given a bunch of observed
observed measurements.

» The goal of MLE is to find optimal way to fit a distribution to the data so, as to work easily with
with data



Continue...

Estimation of u & o*:

-1
« Density of normal random variable - f(y) - \f%ﬂ 0352V —H)7

L (u, o) isajoint density
Now,

1  ipy=i)2
let, L (1, 0%) =f(y1. ¥2..-... Vi) = ?zlm g2 I 1)

let, assume g% = 6

-1
let, L (u, 0) - T PACRIDL

(/270)
taking log on both sides
-1
LL (u,0) =log (2379)_% + log (EF(J’ _‘”)2) *LL (u, @) 1s denoted as log of joint density

=—-§-10g(2n6) — %(y -w?*  (2) x loge* = x



Continue...

* Our objective is to estimate the next occurring of data point y in the distribution of data.
Using MLE we can find the optimal value for (u, o4). For a given trainings set we need to
find max LL (i, 0) .

 Let us assume 0 = ¢ for simplicity

« Now, we use partial derivatives to find the optimal values of (u, o) and equating to zero
LL' =0

1
LL (,0) = —%103(2719) —lr—u)
« Taking partial derivative wrt u in eq (2), we get

: 2
LL, =0 - EZ()&' —u) (-1)
=>>Y(y; —u) =0 * LL), 1s partial derivative of LL wrt




Continue...

1
U= HZ Vi * [l is estimated mean value

Again taking partial derivatives on eq (2) wrt 6
P et S Y o )R
LLp= -3 (2m) - 75 20 — )

Setting above to zero, we get

nil

L3 g Bl

Finally, this leads to solution

— -~ 1 e . .
62=0= Y- Nk * 02 is estimated variance

After plugging estimate of
0% =3 )’



Continue...

: l _
» Above estimate can be general] 2 _ly o2 [0r° *error=y —y

n

 Finally we estimated the value of mean and variance in order to predict the future
occurrence of y (9) data points.

» Theretore the best estimate of occurrence of next y (y) that is likely to occur is i and the
solution is arrived by using SSE (g4)



Optimization & Derivatives

J(6) = 5- ZEZ 0 — EJ27 %i6))?

yl x11 x12 xlk 91
Y2 s B 5/
v=( 70| X=[Y2r Ttz TEEL =
Yn Xn1 X2n - Xnk Qk

Zj _1 x;;0; is simple multiplication of i*" row of matrix X and vector 6 . Hence

1 =
- Lyizny — X0’



Continue...
- (v-9) (-7
J(6)= — (Y — X6)' (Y — X6)
=Y'Y —-Y'X6 —YX0' — X0'X6O
Now, Derivative with respect to 6
9 _ 2
g =0 2XY + 2X“6
- — (- 2XY + 2X26)

2n

_ ’ _ y2

= — = (XY - X26)

= — — (XY - X'X0)
|- ~

= ——X'(Y-7)

J(0)=—X'(¥ - Y)

o

X0



How to start with Gradient Descent

« The basic assumption is to start at any random position x, and take derivative value.
+ 15t case: if derivative value > 0, increasing

 Action : then change the 6, values using the gradient descent formula.

d J(01)
6,

¢ 91=91“a

* here, a = learning rate / parameter



Gradient Descent algorithm

. d J(o . L .

» Repeat until convergence{ 0,: =6; - « C]i (9 1) here, assuming 6, = o for univariate linear
1
regression }

For multi variate linear regression:

. d J(6,6
» Repeat until convergence { 6, := 6; - a J fi g 23

J

Simultaneous update of 8, 6,

Temp () = 90: — 90 - djiigg,el)
0

Temp1 :=6,:=0, - adjéef;,gl)
1

0,: =1TempoO
91: = Temp 1



Effects associated with varying values of
learning rate (a)

Big learning rate Small learning rate




Continue:

 In the first case, we may find difficulty to reach at global optima since large value of @ may
overshoot the optimal position due to aggressive updating of 6 values.

» Therefore, as we approach optima position, gradient descent will take automatically
smaller steps.



Conclusion

 The cost function for linear regression is always gong to be a bow-shaped function
(convex function)

 This function doesn’t have an local optima except for the one global optima.

 Therefore, using cost function of type (6, 68,) which we get whenever we are using linear
regression, it will always converge to the global optimum.

« Most important is make sure our gradient descent algorithms is working properly .

* On increasing number of iterations, the value of J(6, 6,;) should get decreasing after every
iterations.

* Determining the automatic convergence test is difficult because we don't know the
threshold value.



