Linear Regression, Costs & Gradient Descent

Pallavi Mishra

&

Revanth Kumar

Introduction to Linear Regression

- Linear Regression is a predictive model to map the relation between dependent variable and one or more independent variables.
- It is a supervised learning method and regression problem which predicts

real valued output.

• The predicted output is done by forming Hypothesis based

$$\hat{Y} = \theta_0 + \theta_1 x_1$$
 (Single Independent Variable)

$$\hat{Y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$
 (Multiple Independent Va

$$=\sum_{i=0}^{k} \theta_i x_i$$
; Where $x_0 = 1$ (1)

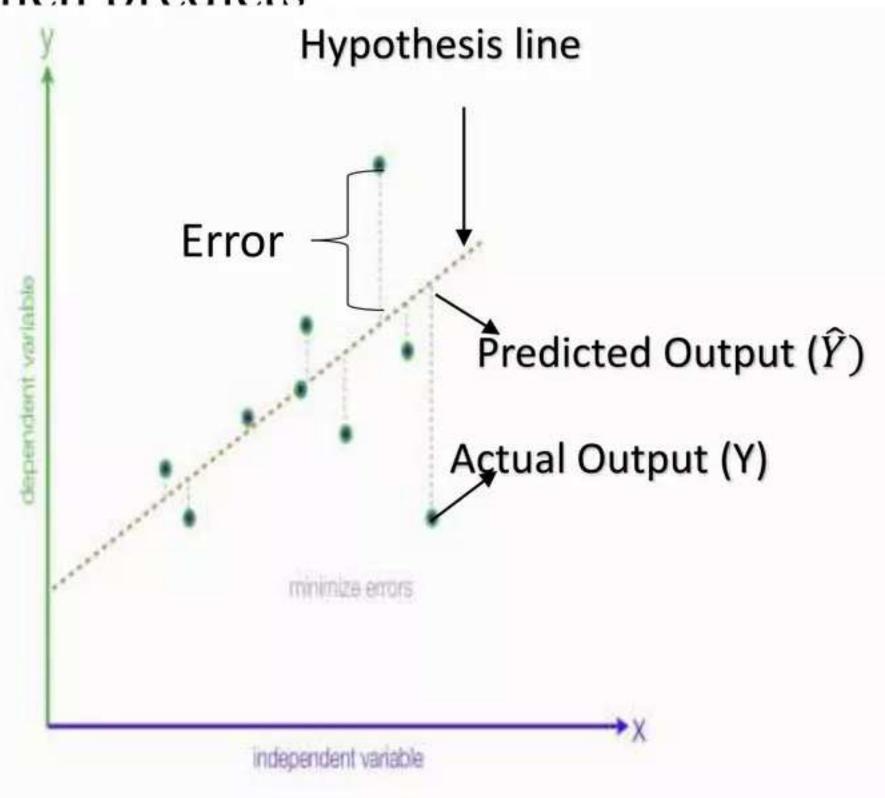
Where θ_i = parameters for i^{th} independent variable(s)

For estimation of performance of the linear model, SSE

Squared Sum Error (SSE) =
$$\sum_{i=1}^{k} (Y - \hat{Y})^2$$

Note: Here, *Y* is the actual observed output

And, \hat{Y} is the predicted output.



Model Representation

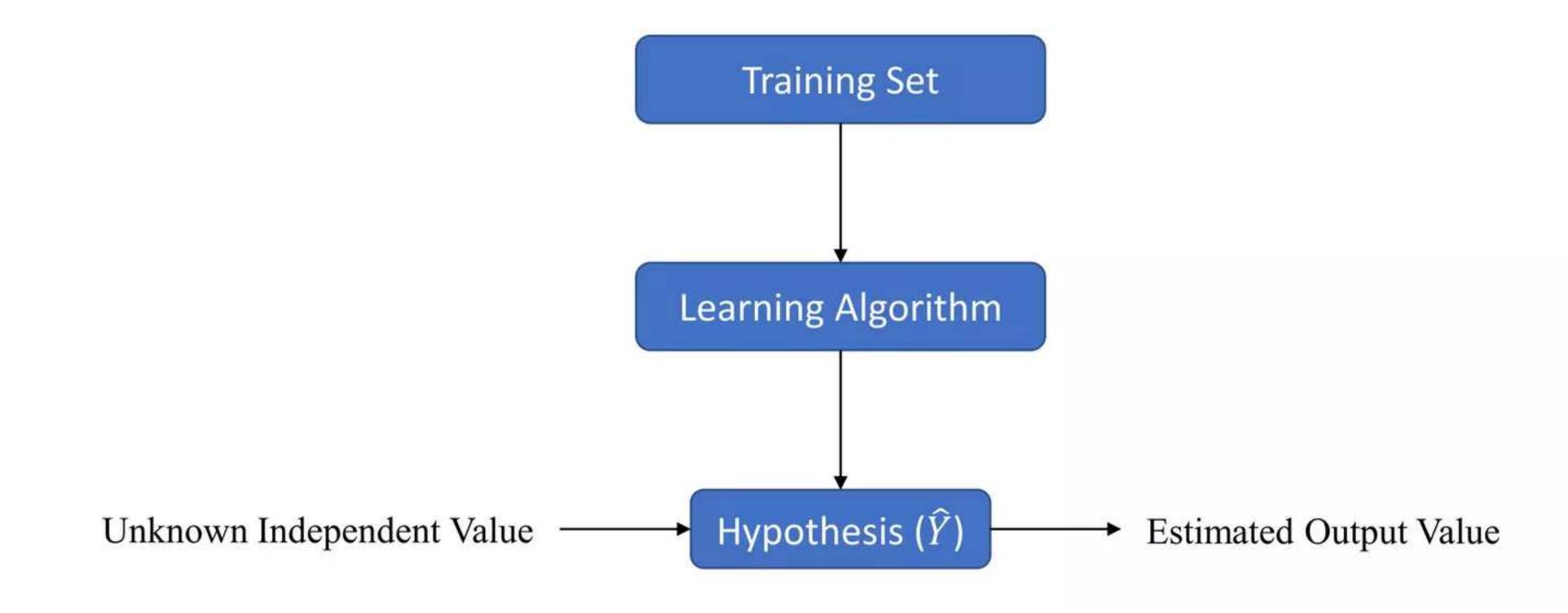


Fig.1 Model Representation of Linear Regression

Hint: Gradient descent as learning algorithm

How to Represent Hypothesis?

- We know, hypothesis is represented by \hat{Y} , which can be formulated depending upon single variable linear regression (Univariate Linear Regression) or Multi-variate linear regression.
- $\hat{Y} = \theta_0 + \theta_1 x_1$
- Here, θ_0 = intercept and θ_1 = slope= $\frac{\Delta y}{\Delta x}$ and x_1 = independent variable
- Question arises: How do we choose $\theta_{i's}$ values for best fitting hypothesis?
- Idea: Choose θ_0 , θ_1 so that \hat{Y} is close to Y for our training examples (x, y)
- Objective: min $J(\theta_0, \theta_1)$,
- Note: $J(\theta_0, \theta_1) = \text{Cost Function}$.
- Formulation of $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{Y}^{(i)} Y^{(i)})^2$

Note: m = No. of instances of dataset

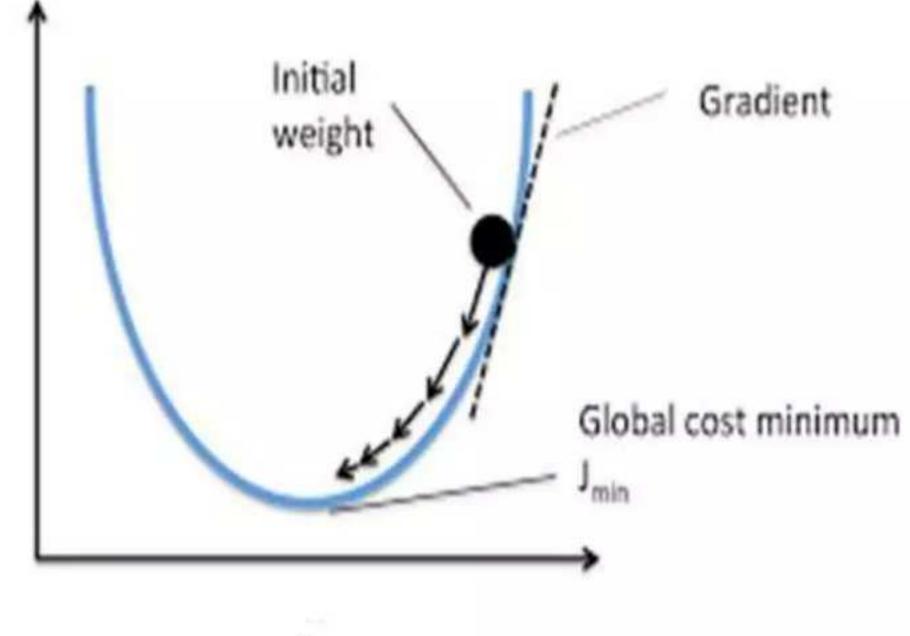
Objective function for linear regression

- The most important objective of linear regression model is to minimize cost function by choosing a optimal value for θ_0 , θ_1 .
- · For optimization technique, Gradient Descent is mostly used in case of predictive models.

• By taking $\theta_0 = 0$ and $\theta_1 = some random values (in case of univariate linear regression), the graph <math>(\theta_1 \text{ vs } J(\theta_1))$ gets represented in the form of l

Advantage of Gradient descent in linear regressio

• No scope to stuck in local optima, since there is only One global optima position where $slope(\theta_1) = o_1(\theta_1)$ (convex graph)



Normal Distribution $N(\mu, \sigma^2)$

Estimation of mean (μ) and variance (σ^2) :

- Let size of data set = n, denoted by y_1, y_2, \dots, y_n
- Assuming y_1, y_2, \dots, y_n are independent random variables or Independent Identically Distributed (iid), they are normally distributed random variables.
- Assuming no independent variables (x), in order to estimate the future value of y we need to find to find unknown parameters ($\mu \& \sigma^2$).

Concept of Maximum Likelihood Estimation:

- Using Maximum Likelihood Estimation (MLE) concept, we are trying to find the optimal value for value for the mean (μ) and standard deviation (σ) for distribution given a bunch of observed observed measurements.
- The goal of MLE is to find optimal way to fit a distribution to the data so, as to work easily with with data

Estimation of $\mu \& \sigma^2$:

• Density of normal random variable = $f(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-1}{2\sigma^2}(y-\mu)^2}$

L (μ, σ^2) is a joint density

Now,

let, L
$$(\mu, \sigma^2)$$
 = f $(y_1, y_2, \dots, y_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-1}{2\sigma^2}(y-\mu)^2}$

let, assume $\sigma^2 = \theta$

let, L
$$(\mu, \theta) = \frac{1}{(\sqrt{2\pi\theta})^n} e^{\frac{-1}{2\theta}\sum (y-\mu)^2}$$

taking log on both sides

LL
$$(\mu, \theta) = \log (2\pi\theta)^{-\frac{n}{2}} + \log (e^{\frac{-1}{2\sigma^2}(y-\mu)^2})$$
 *LL (μ, θ) is denoted as log of joint density
$$= -\frac{n}{2}\log(2\pi\theta) - \frac{1}{2\theta}(y-\mu)^2$$
 (2) * $\log e^x = x$

- Our objective is to estimate the next occurring of data point y in the distribution of data. Using MLE we can find the optimal value for (μ, σ^2) . For a given trainings set we need to find max LL (μ, θ) .
- Let us assume $\theta = \sigma^2$ for simplicity
- Now, we use partial derivatives to find the optimal values of (μ, σ^2) and equating to zero LL' = 0

$$LL(\mu, \theta) = -\frac{n}{2}\log(2\pi\theta) - \frac{1}{2\theta}(y - \mu)^2$$

• Taking partial derivative wrt μ in eq (2), we get

$$LL'_{\mu} = 0 - \frac{2}{2\theta} \sum (y_i - \mu) (-1)$$

$$=> \sum (y_i - \mu) = 0$$

$$=>\sum y_i=n_\mu$$

* LL'_{μ} is partial derivative of LL wrt μ

$$\hat{\mu} = \frac{1}{n} \sum y_i$$

* $\hat{\mu}$ is estimated mean value

Again taking partial derivatives on eq (2) wrt θ

$$LL'_{\theta} = -\frac{n}{2} \frac{1}{2\pi\theta} (2\pi) - \frac{-1}{2\theta^2} \sum (y_i - \mu)^2$$

Setting above to zero, we get

$$\Rightarrow \frac{1}{2\theta} \sum (y_i - \mu)^2 = \frac{n}{2} \frac{1}{\theta}$$

Finally, this leads to solution

$$\widehat{\sigma^2} = \widehat{\theta} = \frac{1}{n} \sum (y_i - \mu)^2$$

After plugging estimate of

$$\widehat{\sigma^2} = \frac{1}{n} \sum (y - \overline{y})^2$$

* $\widehat{\sigma^2}$ is estimated variance

• Above estimate can be general $\widehat{\sigma^2} = \frac{1}{n} \sum error^2$ ror^2

$$\widehat{\sigma^2} = \frac{1}{n} \sum error^2$$

- * error = $y \bar{y}$
- Finally we estimated the value of mean and variance in order to predict the future occurrence of y (\hat{y}) data points.
- Therefore the best estimate of occurrence of next y (\hat{y}) that is likely to occur is $\hat{\mu}$ and the solution is arrived by using SSE $(\widehat{\sigma^2})$

Optimization & Derivatives

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{i=n} (y_i - \sum_{j=1}^{j=k} x_{ij} \theta_j)^2$$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}; \qquad \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{2n} & \dots & x_{nk} \end{bmatrix}; \qquad \theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \dots \\ \theta_k \end{pmatrix}$$

 $\sum_{j=1}^{j=k} x_{ij} \theta_j$ is simple multiplication of i^{th} row of matrix X and vector θ . Hence

$$= \frac{1}{2n} \sum_{i=1}^{i=n} (Y - X\theta)^2$$

$$= (Y - \hat{Y})'(Y - \hat{Y}) \qquad \therefore \hat{Y} = X\theta$$

$$J(\theta) = \frac{1}{2n} (Y - X\theta)'(Y - X\theta)$$

$$= Y'Y - Y'X\theta - YX\theta' - X\theta'X\theta$$

Now, Derivative with respect to θ

$$\frac{\partial}{\partial \theta} = 0 - 2XY + 2X^2\theta$$

$$= \frac{1}{2n} (-2XY + 2X^2\theta)$$

$$= -\frac{2}{2n} (XY - X^2\theta)$$

$$= -\frac{1}{n} (XY - X'X\theta)$$

$$= -\frac{1}{n} X'(Y - \hat{Y})$$

$$J(\theta) = \frac{1}{n} X'(\hat{Y} - Y)$$

How to start with Gradient Descent

- The basic assumption is to start at any random position x_0 and take derivative value.
- 1^{st} case: if derivative value > 0, increasing
- Action: then change the θ_1 values using the gradient descent formula.
- $\theta_1 = \theta_1 \alpha \frac{d J(\theta_1)}{d \theta_1}$
- here, α = learning rate / parameter

Gradient Descent algorithm

• Repeat until convergence $\{\theta_1 := \theta_1 - \alpha \frac{d J(\theta_1)}{d\theta_1} \}$ here, assuming $\theta_0 = 0$ for univariate linear regression $\}$

For multi variate linear regression:

• Repeat until convergence $\{\theta_j := \theta_j - \alpha \frac{d J(\theta_{0,\theta_1})}{d\theta_j}\}$

Simultaneous update of θ_{0} , θ_{1}

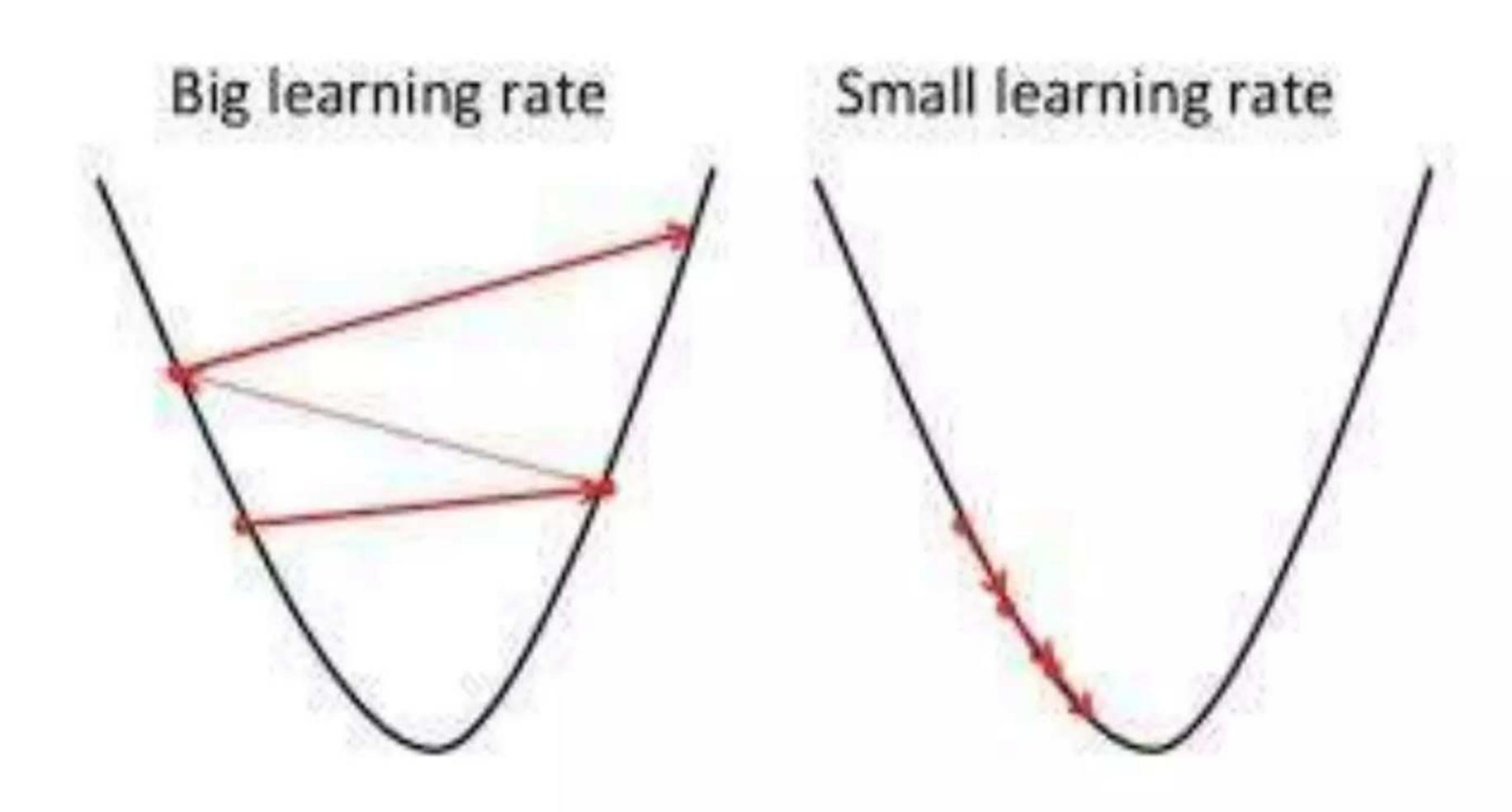
Temp o :=
$$\theta_0$$
: = θ_0 - $\alpha \frac{d J(\theta_{0,}\theta_1)}{d\theta_0}$

Temp 1 :=
$$\theta_1$$
: = θ_1 - $\alpha \frac{d J(\theta_{0,}\theta_1)}{d\theta_1}$

$$\theta_o$$
: = Temp o

$$\theta_1$$
: = Temp 1

Effects associated with varying values of learning rate (α)



Continue:

- In the first case, we may find difficulty to reach at global optima since large value of α may overshoot the optimal position due to aggressive updating of θ values.
- Therefore, as we approach optima position, gradient descent will take automatically smaller steps.

Conclusion

- The cost function for linear regression is always gong to be a bow-shaped function (convex function)
- This function doesn't have an local optima except for the one global optima.
- Therefore, using cost function of type $J(\theta_{0},\theta_{1})$ which we get whenever we are using linear regression, it will always converge to the global optimum.
- Most important is make sure our gradient descent algorithms is working properly.
- On increasing number of iterations, the value of $J(\theta_{0},\theta_{1})$ should get decreasing after every iterations.
- Determining the automatic convergence test is difficult because we don't know the threshold value.