
SNS COLLEGE OF
TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC –
UGC with ‘A+’ Grade Approved by AICTE, New Delhi &

Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

A.Catherine,AP/AIML

19AMB302-FULL STACK AI

PYTHON LIST SLICING

•In Python, list slicing is a common practice and it is the most

used technique for programmers to solve efficient problems.

•Consider a Python list, in order to access a range of elements

in a list, you need to slice a list. One way to do this is to use

the simple slicing operator i.e. colon(:). With this operator,

one can specify where to start the slicing, where to end, and

specify the step.

• List slicing returns a new list from the existing list.

1.Python List Slicing Syntax

The format for list slicing is of Python List Slicing is as

follows:

Lst[Initial : End : IndexJump] If Lst is a list, then the above

expression returns the portion of the list from index Initial to

index End, at a step size IndexJump.

https://www.geeksforgeeks.org/python-programming-language/

2.Indexing in Python List

•Indexing is a technique for accessing the elements of

a Python List. There are various ways by which we can

access an element of a list.

Positive Indexes

In the case of Positive Indexing, the first element of the list

has the index number 0, and the last element of the list has

the index number N-1, where N is the total number of

elements in the list (size of the list).

https://www.geeksforgeeks.org/python-lists/

Example:

In this example, we will display a whole list using positive index

slicing.

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]

Display list

print(Lst[::])

Output:

[50, 70, 30, 20, 90, 10, 50]

Negative Indexes

The below diagram illustrates a list along with its negative

indexes. Index -1 represents the last element and -N represents

the first element of the list, where N is the length of the list.

Example:

In this example, we will access the elements of a list using

negative indexing.

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]

Display list

print(Lst[-7::1])

Output:

[50, 70, 30, 20, 90, 10, 50]

Slicing

As mentioned earlier list slicing in Python is a common practice

and can be used both with positive indexes as well as negative

indexes. The below diagram illustrates the technique of list

slicing:

Example:

In this example, we will transform the above illustration into

Python code.

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]

Display list

print(Lst[1:5])

Output:

[70, 30, 20, 90]

Examples of List Slicing in Python

Let us see some examples which depict the use of list slicing in

Python.

Example 1: Leaving any argument like Initial, End, or

IndexJump blank will lead to the use of default values i.e. 0 as

Initial, length of the list as End, and 1 as IndexJump.

Initialize list

List = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Show original list

print("Original List:\n", List)

print("\nSliced Lists: ")

Display sliced list

print(List[3:9:2])

Display sliced list

print(List[::2])

Display sliced list

print(List[::])

Output:

Original List: [1, 2, 3, 4, 5, 6, 7, 8, 9] Sliced Lists: [4, 6, 8] [1, 3, 5, 7,

9] [1, 2, 3, 4, 5, 6, 7, 8, 9]

Example 2: A reversed list can be generated by using a

negative integer as the IndexJump argument. Leaving the

Initial and End as blank. We need to choose the Initial and End

values according to a reversed list if the IndexJump value is

negative.

Initialize list

List = ['Geeks', 4, 'geeks !']

Show original list

print("Original List:\n", List)

print("\nSliced Lists: ")

Display sliced list

print(List[::-1])

Display sliced list

print(List[::-3])

Display sliced list

print(List[:1:-2])

Example 3: If some slicing expressions are made that do

not make sense or are incomputable then empty lists are

generated.

Initialize list

List = [-999, 'G4G', 1706256, '^_^', 3.1496]

Show original list

print("Original List:\n", List)

print("\nSliced Lists: ")

Display sliced list

print(List[10::2])

Display sliced list

print(List[1:1:1])

Display sliced list

print(List[-1:-1:-1])

Display sliced list

print(List[:0:])

Output:

Original List: [-999, 'G4G', 1706256, '^_^', 3.1496] Sliced

Lists: [] [] [] []

Example 4: List slicing can be used to modify lists

or even delete elements from a list.

Initialize list

List = [-999, 'G4G', 1706256, 3.1496, '^_^']

Show original list

print("Original List:\n", List)

print("\nSliced Lists: ")

Modified List

List[2:4] = ['Geeks', 'for', 'Geeks', '!']

Display sliced list

print(List)

Modified List

List[:6] = []

Display sliced list

print(List)

Output:

Original List: [-999, 'G4G', 1706256, 3.1496, '^_^'] Sliced Lists:

[-999, 'G4G', 'Geeks', 'for', 'Geeks', '!', '^_^'] ['^_^']

Example 5: By concatenating sliced lists, a new list can be

created or even a pre-existing list can be modified.

Initialize list

List = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Show original list

print("Original List:\n", List)

print("\nSliced Lists: ")

Creating new List

newList = List[:3]+List[7:]

Display sliced list

print(newList)

Changing existing List

List = List[::2]+List[1::2]

Display sliced list

print(List)

Output:

Original List: [1, 2, 3, 4, 5, 6, 7, 8, 9] Sliced Lists: [1, 2, 3, 8,

9] [1, 3, 5, 7, 9, 2, 4, 6, 8]

THANKYOU

SNS COLLEGE OF
TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC –
UGC with ‘A+’ Grade Approved by AICTE, New Delhi &

Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

M.POORNIMA DEVI,AP/AIML

19AMB302-FULL STACK AI

SLICING PANDAS DATAFRAME

•Slicing Pandas DataFrames is a powerful technique, allowing

extraction of specific data subsets based on integer positions.

•In this article, let’s understand examples showcasing row and

column slicing, cell selection, and boolean conditions.

Slicing Pandas Dataframe

•With the help of Pandas, we can perform slicing in

Dataframe.

•Slicing in pandas dataframes using iloc[] is a powerful

technique in Python for extracting specific subsets of data.

• The iloc[] method allows you to locate and extract rows and

columns based on their integer positions.

•To perform slicing with iloc[], you specify the row and

column indices you want to include in your sliced dataframe.

• The syntax is similar to traditional array slicing, making it

intuitive for Python users. For example, df.iloc[1:5,

2:4] extracts rows 2 to 5 and columns 3 to 4 from the

dataframe.

Slicing a DataFrame in Pandas includes the following steps:

1.Create a DataFrame

2.Slice the DataFrame

Example:

import pandas as pd

Initializing the nested list with Data set

player_list = [['M.S.Dhoni', 36, 75, 5428000],

['A.B.D Villers', 38, 74,

3428000],

['V.Kohli', 31, 70, 8428000],

['S.Smith', 34, 80, 4428000],

['C.Gayle', 40, 100, 4528000],

['J.Root', 33, 72, 7028000],

['K.Peterson', 42, 85, 2528000]]

creating a pandas dataframe

df = pd.DataFrame(player_list, columns=['Name', 'Age',

'Weight', 'Salary'])

df # data frame before slicing

1. Slicing Using iloc

A. Slicing Rows in dataframe in python

B. # Slicing rows in data frame

C. df1 = df.iloc[0:4]

D. # data frame after slicing

A. Df1

Output:

Name Age Weight Salary 0 M.S.Dhoni 36 75 5428000 1

A.B.D Villers 38 74 3428000 2 V.Kohli 31 70 8428000 3

S.Smith 34 80 4428000

B. Slicing Columns in dataframe in python

Slicing columnss in data frame

df1 = df.iloc[:, 0:2]

data frame after slicing

Df1

Output:

Name Age 0 M.S.Dhoni 36 1 A.B.D Villers 38 2 V.Kohli 31

3 S.Smith 34 4 C.Gayle 40 5 J.Root 33 6 K.Peterson 42

C. Selecting a Specific Cell in Dataframe in Python

specific_cell_value = df.iloc[2, 3] # Row 2, Column 3 (Salary)

print("Specific Cell Value:", specific_cell_value)

Output:

Specific Cell Value: 8428000

D. Using Boolean Conditions in Dataframe in Python

filtered_data = df[df['Age'] > 35].iloc[:, :] # Select rows where

Age is greater than 35

print("\nFiltered Data based on Age > 35:\n", filtered_data)

Output:

Filtered Data based on Age > 35: Name Age Weight Salary 0

M.S.Dhoni 36 75 5428000 1 A.B.D Villers 38 74 3428000 4

C.Gayle 40 100 4528000 6 K.Peterson 42 85 2528000

2. Slicing Using loc[]

We can also, implement slicing through loc there are some

limitations:

•loc relies on labels, and if your DataFrame has custom labels, you

need to be careful with how you specify them.

•If labels are integers, there might be confusion between using

integer positions and actual labels.

For this, we need to set index as labels manually with following

code:

df_custom = df.set_index('Name')

df_custom

Output:

Age Weight Salary Name M.S.Dhoni 36 75 5428000 A.B.D

Villers 38 74 3428000 V.Kohli 31 70 8428000 S.Smith 34 80

4428000 C.Gayle 40 100 4528000 J.Root 33 72 7028000

K.Peterson 42 85 2528000

A. Slicing Rows in Dataframe in Python

sliced_rows_custom = df_custom.loc['A.B.D

Villers':'S.Smith']

sliced_rows_custom

Output:

Age Weight Salary Name A.B.D Villers 38 74 3428000

V.Kohli 31 70 8428000 S.Smith 34 80 4428000

B. Selecting Specified cell in Dataframe in Python

specific_cell_value = df_custom.loc['V.Kohli', 'Salary']

print("\nValue of the Specific Cell (V.Kohli, Salary):",

specific_cell_value)

Output:

Value of the Specific Cell (V.Kohli, Salary): 8428000

Conclusion

In summary, both iloc[] and loc[]provide versatile slicing

capabilities in Pandas. While iloc[] is integer-based, loc[]

relies on labels, requiring careful consideration when working

with custom indices or mixed data types.

THANKYOU

