15

Random Forests

15.1 Introduction

Bagging or bootstrap aggregation (section 8.7) is a technique for reducing
the variance of an estimated prediction function. Bagging seems to work
especially well for high-variance, low-bias procedures, such as trees. For
regression, we simply fit the same regression tree many times to bootstrap-
sampled versions of the training data, and average the result. For classifi-
cation, a committee of trees each cast a vote for the predicted class.

Boosting in Chapter 10 was initially proposed as a committee method as
well, although unlike bagging, the committee of weak learners evolves over
time, and the members cast a weighted vote. Boosting appears to dominate
bagging on most problems, and became the preferred choice.

Random forests (Breiman, 2001) is a substantial modification of bagging
that builds a large collection of de-correlated trees, and then averages them.
On many problems the performance of random forests is very similar to
boosting, and they are simpler to train and tune. As a consequence, random
forests are popular, and are implemented in a variety of packages.

15.2 Definition of Random Forests

The essential idea in bagging (Section 8.7) is to average many noisy but
approximately unbiased models, and hence reduce the variance. Trees are
ideal candidates for bagging, since they can capture complex interaction

This is page 587
Printer: Opaque this

588 15. Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T}, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T},}7.
To make a prediction at a new point z:
Regression: fB(x) = + P Ty(x).

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then CZ (x) = majority vote {Cy(x)}P.

structures in the data, and if grown sufficiently deep, have relatively low
bias. Since trees are notoriously noisy, they benefit greatly from the averag-
ing. Moreover, since each tree generated in bagging is identically distributed
(i.d.), the expectation of an average of B such trees is the same as the ex-
pectation of any one of them. This means the bias of bagged trees is the
same as that of the individual trees, and the only hope of improvement is
through variance reduction. This is in contrast to boosting, where the trees
are grown in an adaptive way to remove bias, and hence are not i.d.

An average of B i.i.d. random variables, each with variance o2, has vari-
ance %02. If the variables are simply i.d. (identically distributed, but not
necessarily independent) with positive pairwise correlation p, the variance
of the average is (Exercise 15.1)

1—
po® + ?paz. (15.1)

As B increases, the second term disappears, but the first remains, and
hence the size of the correlation of pairs of bagged trees limits the benefits
of averaging. The idea in random forests (Algorithm 15.1) is to improve
the variance reduction of bagging by reducing the correlation between the
trees, without increasing the variance too much. This is achieved in the
tree-growing process through random selection of the input variables.
Specifically, when growing a tree on a bootstrapped dataset:

Before each split, select m < p of the input variables at random
as candidates for splitting.

15.2 Definition of Random Forests 589

Typically values for m are \/p or even as low as 1.
After B such trees {T'(z; ©p)}¥ are grown, the random forest (regression)
predictor is

1

fR@) == T(x;0y). (15.2)
b=1

|

As in Section 10.9 (page 356), ©, characterizes the bth random forest tree in
terms of split variables, cutpoints at each node, and terminal-node values.
Intuitively, reducing m will reduce the correlation between any pair of trees
in the ensemble, and hence by (15.1) reduce the variance of the average.

Spam Data
I
o —— Bagging
© —— Random Forest
© —— Gradient Boosting (5 Node)
S
o
o
©
8
o
<]
T
Y8
2 o
i
o
Yol
8
o
n
<
3
o
o
<
3 -
IS

0 500 1000 1500 2000 2500

Number of Trees

FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the
spam data. For boosting, 5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each “step” in the figure corre-
sponds to a change in a single misclassification (in a test set of 1536).

Not all estimators can be improved by shaking up the data like this.
It seems that highly nonlinear estimators, such as trees, benefit the most.
For bootstrapped trees, p is typically small (0.05 or lower is typical; see
Figure 15.9), while o2 is not much larger than the variance for the original
tree. On the other hand, bagging does not change linear estimates, such
as the sample mean (hence its variance either); the pairwise correlation
between bootstrapped means is about 50% (Exercise 15.4).

590 15. Random Forests

Random forests are popular. Leo Breiman’s! collaborator Adele Cutler
maintains a random forest website? where the software is freely available,
with more than 3000 downloads reported by 2002. There is a randomForest
package in R, maintained by Andy Liaw, available from the CRAN website.

The authors make grand claims about the success of random forests:
“most accurate,” “most interpretable,” and the like. In our experience ran-
dom forests do remarkably well, with very little tuning required. A ran-
dom forest classifier achieves 4.88% misclassification error on the spam test
data, which compares well with all other methods, and is not significantly
worse than gradient boosting at 4.5%. Bagging achieves 5.4% which is
significantly worse than either (using the McNemar test outlined in Ex-
ercise 10.6), so it appears on this example the additional randomization
helps.

Nested Spheres

0 _ |
5 S ==
5 — = __
S] —_—
§ 2 e
£ o
12}
8
2 o
(o}
[
o Bayes Error
O_ ______________________________________
° T T T T T
RF-1 RF-3 Bagging GBM-1 GBM-6

FIGURE 15.2. The results of 50 simulations from the “nested spheres” model in
IR'°. The Bayes decision boundary is the surface of a sphere (additive). “RF-8”
refers to a random forest with m = 3, and “GBM-6" a gradient boosted model
with interaction order six; similarly for “RF-17 and “GBM-1.” The training sets
were of size 2000, and the test sets 10,000.

Figure 15.1 shows the test-error progression on 2500 trees for the three
methods. In this case there is some evidence that gradient boosting has
started to overfit, although 10-fold cross-validation chose all 2500 trees.

1Sadly, Leo Breiman died in July, 2005.
2http://www.math.usu.edu/~adele/forests/

15.2 Definition of Random Forests 591

California Housing Data

RF m=2
3 RF m=6
© © GBM depth=4
® GBM depth=6
o
<l'. —
o

Test Average Absolute Error
0.38 0.40
| |

0.36
1

0.34
1

1 1 1 1 1 1
0 200 400 600 800 1000

Number of Trees

FIGURE 15.3. Random forests compared to gradient boosting on the California
housing data. The curves represent mean absolute error on the test data as a
function of the number of trees in the models. Two random forests are shown, with
m = 2 and m = 6. The two gradient boosted models use a shrinkage parameter
v =0.05 in (10.41), and have interaction depths of 4 and 6. The boosted models
outperform random forests.

Figure 15.2 shows the results of a simulation® comparing random forests
to gradient boosting on the nested spheres problem [Equation (10.2) in
Chapter 10]. Boosting easily outperforms random forests here. Notice that
smaller m is better here, although part of the reason could be that the true
decision boundary is additive.

Figure 15.3 compares random forests to boosting (with shrinkage) in a
regression problem, using the California housing data (Section 10.14.1).
Two strong features that emerge are

e Random forests stabilize at about 200 trees, while at 1000 trees boost-
ing continues to improve. Boosting is slowed down by the shrinkage,
as well as the fact that the trees are much smaller.

e Boosting outperforms random forests here. At 1000 terms, the weaker
boosting model (GBM depth 4) has a smaller error than the stronger

3Details: The random forests were fit using the R package randomForest 4.5-11,
with 500 trees. The gradient boosting models were fit using R package gbm 1.5, with
shrinkage parameter set to 0.05, and 2000 trees.

592 15. Random Forests

n
~
5
© ‘ ~—— 0OB Error
<} 4 | ~—— Test Error
m Yol
§ g
= 9
g °
=
%]
123
Kl
8 8
8 |
= 3
wn
<
g
o \ \ \ \ \ \

0 500 1000 1500 2000 2500

Number of Trees

FIGURE 15.4. 00B error computed on the spam training data, compared to the
test error computed on the test set.

random forest (RF m = 6); a Wilcoxon test on the mean differences
in absolute errors has a p-value of 0.007. For larger m the random
forests performed no better.

15.3 Details of Random Forests

We have glossed over the distinction between random forests for classifica-
tion versus regression. When used for classification, a random forest obtains
a class vote from each tree, and then classifies using majority vote (see Sec-
tion 8.7 on bagging for a similar discussion). When used for regression, the
predictions from each tree at a target point x are simply averaged, as in
(15.2). In addition, the inventors make the following recommendations:

e For classification, the default value for m is [/p] and the minimum
node size is one.

e For regression, the default value for m is |p/3] and the minimum
node size is five.

In practice the best values for these parameters will depend on the problem,
and they should be treated as tuning parameters. In Figure 15.3 the m = 6
performs much better than the default value |8/3| = 2.

15.3.1 Out of Bag Samples

An important feature of random forests is its use of out-of-bag (OOB) sam-
ples:

15.3 Details of Random Forests 593

For each observation z; = (x;,y;), construct its random forest
predictor by averaging only those trees corresponding to boot-
strap samples in which z; did not appear.

An 0OB error estimate is almost identical to that obtained by N-fold cross-
validation; see Exercise 15.2. Hence unlike many other nonlinear estimators,
random forests can be fit in one sequence, with cross-validation being per-
formed along the way. Once the 0OB error stabilizes, the training can be
terminated.

Figure 15.4 shows the 0OB misclassification error for the spam data, com-
pared to the test error. Although 2500 trees are averaged here, it appears
from the plot that about 200 would be sufficient.

15.3.2 Variable Importance

Variable importance plots can be constructed for random forests in exactly
the same way as they were for gradient-boosted models (Section 10.13).
At each split in each tree, the improvement in the split-criterion is the
importance measure attributed to the splitting variable, and is accumulated
over all the trees in the forest separately for each variable. The left plot
of Figure 15.5 shows the variable importances computed in this way for
the spam data; compare with the corresponding Figure 10.6 on page 354 for
gradient boosting. Boosting ignores some variables completely, while the
random forest does not. The candidate split-variable selection increases
the chance that any single variable gets included in a random forest, while
no such selection occurs with boosting.

Random forests also use the 00B samples to construct a different variable-
importance measure, apparently to measure the prediction strength of each
variable. When the bth tree is grown, the OOB samples are passed down
the tree, and the prediction accuracy is recorded. Then the values for the
jth variable are randomly permuted in the 0OOB samples, and the accuracy
is again computed. The decrease in accuracy as a result of this permuting
is averaged over all trees, and is used as a measure of the importance of
variable j in the random forest. These are expressed as a percent of the
maximum in the right plot in Figure 15.5. Although the rankings of the
two methods are similar, the importances in the right plot are more uni-
form over the variables. The randomization effectively voids the effect of
a variable, much like setting a coefficient to zero in a linear model (Exer-
cise 15.7). This does not measure the effect on prediction were this variable
not available, because if the model was refitted without the variable, other
variables could be used as surrogates.

594 15. Random Forests

table [l

conference [N
project I
original [N

report [N
telnet [N

lab

[

85
technology
data

pm
address (I
order [N
labs [N
meeting [N
650

;

mail
over NN
receive [N

internet (MM

1999 I

business I
h

edu N

Gini

Variable Importance

Randomization

table [l
parts [
3d I
addresses NN
direct N
report I
cs I
make N
415 I
I
857 I
conference I
credit NN
data IR
project N
people I
teinet I
lab I
original I
address I
85 I
[
labs N
all I
order I
technology I
mail
font I

; I

email I
over I
receive NN

650 I
internet I
will
(

Variable Importance

FIGURE 15.5. Variable importance plots for a classification random forest
grown on the spam data. The left plot bases the importance on the Gini split-
ting index, as in gradient boosting. The rankings compare well with the rankings
produced by gradient boosting (Figure 10.6 on page 354). The right plot uses OOB

randomization to compute variable importances, and tends to spread the impor-
tances more uniformly.

15.3 Details of Random Forests 595

Proximity Plot Random Forest Classifier
008
& s
'.&~ ®e o"oo
Lo
\ D SR
%°® o o'.
[oV] ..' e o °° ° &..o..
c . b Y
kS e
0 X
5 PR S
£ .
3
(I8
(6] .
Dimension 1 X1

FIGURE 15.6. (Left): Prozimity plot for a random forest classifier grown to
the mizture data. (Right): Decision boundary and training data for random forest
on mizture data. Siz points have been identified in each plot.

15.3.8 Proximity Plots

One of the advertised outputs of a random forest is a proximity plot. Fig-
ure 15.6 shows a proximity plot for the mixture data defined in Section 2.3.3
in Chapter 2. In growing a random forest, an N x N proximity matrix is
accumulated for the training data. For every tree, any pair of OOB obser-
vations sharing a terminal node has their proximity increased by one. This
proximity matrix is then represented in two dimensions using multidimen-
sional scaling (Section 14.8). The idea is that even though the data may be
high-dimensional, involving mixed variables, etc., the proximity plot gives
an indication of which observations are effectively close together in the eyes
of the random forest classifier.

Proximity plots for random forests often look very similar, irrespective of
the data, which casts doubt on their utility. They tend to have a star shape,
one arm per class, which is more pronounced the better the classification
performance.

Since the mixture data are two-dimensional, we can map points from the
proximity plot to the original coordinates, and get a better understanding of
what they represent. It seems that points in pure regions class-wise map to
the extremities of the star, while points nearer the decision boundaries map
nearer the center. This is not surprising when we consider the construction
of the proximity matrices. Neighboring points in pure regions will often
end up sharing a bucket, since when a terminal node is pure, it is no longer

596 15. Random Forests

split by a random forest tree-growing algorithm. On the other hand, pairs
of points that are close but belong to different classes will sometimes share
a terminal node, but not always.

15.8.4 Random Forests and Querfitting

When the number of variables is large, but the fraction of relevant variables
small, random forests are likely to perform poorly with small m. At each
split the chance can be small that the relevant variables will be selected.
Figure 15.7 shows the results of a simulation that supports this claim. De-
tails are given in the figure caption and Exercise 15.3. At the top of each
pair we see the hyper-geometric probability that a relevant variable will be
selected at any split by a random forest tree (in this simulation, the relevant
variables are all equal in stature). As this probability gets small, the gap
between boosting and random forests increases. When the number of rele-
vant variables increases, the performance of random forests is surprisingly
robust to an increase in the number of noise variables. For example, with 6
relevant and 100 noise variables, the probability of a relevant variable being
selected at any split is 0.46, assuming m = \ﬂ6 +100) &~ 10. According to
Figure 15.7, this does not hurt the performance of random forests compared
with boosting. This robustness is largely due to the relative insensitivity of
misclassification cost to the bias and variance of the probability estimates
in each tree. We consider random forests for regression in the next section.

Another claim is that random forests “cannot overfit” the data. It is
certainly true that increasing B does not cause the random forest sequence
to overfit; like bagging, the random forest estimate (15.2) approximates the
expectation

fri(w) = BT (w;0) = Jim f@)f (15.3)

with an average over B realizations of ©. The distribution of © here is con-
ditional on the training data. However, this limit can overfit the data; the
average of fully grown trees can result in too rich a model, and incur unnec-
essary variance. Segal (2004) demonstrates small gains in performance by
controlling the depths of the individual trees grown in random forests. Our
experience is that using full-grown trees seldom costs much, and results in
one less tuning parameter.

Figure 15.8 shows the modest effect of depth control in a simple regression
example. Classifiers are less sensitive to variance, and this effect of over-
fitting is seldom seen with random-forest classification.

15.4 Analysis of Random Forests 597

0.52 0.34 0.25 0.19 0.15
1 | | | |
8 | 8
o
o 8
= Random Forest o .

® Gradient Boosting

-fo

{0
1

-
‘
‘
(e} i
f—
‘
Q w
‘
‘
‘.‘ [
| ' -~
‘
. - |
‘
: '
‘
- -

Test Misclassification Error
0.20
|

Bayes Error

(2, 5) (2, 25) (2, 50) (2, 100) (2, 150)

Number of (Relevant, Noise) Variables

FIGURE 15.7. A comparison of random forests and gradient boosting on prob-
lems with increasing numbers of noise variables. In each case the true decision
boundary depends on two variables, and an increasing number of noise variables
are included. Random forests uses its default value m = \/p. At the top of each
pair is the probability that one of the relevant variables is chosen at any split.
The results are based on 50 simulations for each pair, with a training sample of
300, and a test sample of 500.

15.4 Analysis of Random Forests Ny

v
In this section we analyze the mechanisms at play with the additional
randomization employed by random forests. For this discussion we focus
on regression and squared error loss, since this gets at the main points,
and bias and variance are more complex with 0-1 loss (see Section 7.3.1).
Furthermore, even in the case of a classification problem, we can consider
the random-forest average as an estimate of the class posterior probabilities,
for which bias and variance are appropriate descriptors.

15.4.1 Variance and the De-Correlation Effect
The limiting form (B — o0) of the random forest regression estimator is
fit(z) = EozT(x;0(2)), (15.4)

where we have made explicit the dependence on the training data Z. Here
we consider estimation at a single target point x. From (15.1) we see that

598 15. Random Forests

Shallow Deep

—_—

'
'
I I
' | '
—_— ' ' '
' I |
‘ | . .
' ' '
! I
| ‘ .
! I
I
. ‘ ‘
' '
| '
' '
i
| I
. ' ' ' '
' ' | ' B
I

—_

Mean Squared Test Error
1.05
1

—_

1.00
|

T T T T T
50 30 20 10 5

Minimum Node Size

FIGURE 15.8. The effect of tree size on the error in random forest regres-
sion. In this example, the true surface was additive in two of the 12 wvariables,
plus additive unit-variance Gaussian noise. Tree depth is controlled here by the
minimum node size; the smaller the minimum node size, the deeper the trees.

Var foe (z) = p(x)o?(z). (15.5)
Here

e p(x) is the sampling correlation between any pair of trees used in the
averaging:
p(x) = corr[T(x;01(Z)), T(x;02(7Z))], (15.6)

where ©1(Z) and ©4(Z) are a randomly drawn pair of random forest
trees grown to the randomly sampled Z;

e o%(x) is the sampling variance of any single randomly drawn tree,

o?(x) = Var T(z; O(Z)). (15.7)

Tt is easy to confuse p(x) with the average correlation between fitted trees
in a given random-forest ensemble; that is, think of the fitted trees as N-
vectors, and compute the average pairwise correlation between these vec-
tors, conditioned on the data. This is not the case; this conditional corre-
lation is not directly relevant in the averaging process, and the dependence
on x in p(x) warns us of the distinction. Rather, p(x) is the theoretical
correlation between a pair of random-forest trees evaluated at x, induced
by repeatedly making training sample draws Z from the population, and
then drawing a pair of random forest trees. In statistical jargon, this is the
correlation induced by the sampling distribution of Z and ©.

More precisely, the variability averaged over in the calculations in (15.6)
and (15.7) is both

15.4 Analysis of Random Forests 599

e conditional on Z: due to the bootstrap sampling and feature sampling
at each split, and

e a result of the sampling variability of Z itself.

In fact, the conditional covariance of a pair of tree fits at z is zero, because
the bootstrap and feature sampling is i.i.d; see Exercise 15.5.

o
S oa
L3820
-} ..
©
§37 OEQ .-.-.-
= -. ‘;5‘8
5 O?‘-“ gﬁt’
@ o wwd_ﬁ
2 3 g M L5
8 24 THR e ©
5 o, T
® =
2 8 v
8§ &1 =
s
o

14 7 13 19 25 31 37 43 49

Number of Randomly Selected Splitting Variables m

FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest
regression algorithm, as a function of m. The boxplots represent the correlations
at 600 randomly chosen prediction points x.

The following demonstrations are based on a simulation model
&0
=—> X;+e, 15.8
HLX (155)

with all the X; and € iid Gaussian. We use 500 training sets of size 100, and
a single set of test locations of size 600. Since regression trees are nonlinear
in Z, the patterns we see below will differ somewhat depending on the
structure of the model.

Figure 15.9 shows how the correlation (15.6) between pairs of trees de-
creases as m decreases: pairs of tree predictions at x for different training
sets Z are likely to be less similar if they do not use the same splitting
variables.

In the left panel of Figure 15.10 we consider the variances of single tree
predictors, VarT'(x;©(Z)) (averaged over 600 prediction points x drawn
randomly from our simulation model). This is the total variance, and can be

600 15. Random Forests

decomposed into two parts using standard conditional variance arguments
(see Exercise 15.5):

Varg zT(x;0(Z)) = VarzEezT(x;0(Z)) + EzVargzT(x;0(Z))
Total Variance = Vary, frf(.’L') + within-Z Variance
(15.9)

The second term is the within-Z variance—a result of the randomization,
which increases as m decreases. The first term is in fact the sampling vari-
ance of the random forest ensemble (shown in the right panel), which de-
creases as m decreases. The variance of the individual trees does not change
appreciably over much of the range of m, hence in light of (15.5), the vari-
ance of the ensemble is dramatically lower than this tree variance.

Single Tree Random Forest Ensemble
°
s ® oo o g e L 8
ce®®?® 2 o [S]
1o} °® o
o) - °] .
= / o °
o 2 o || e00°°”® r)
’ S o | |° P [
3 o | oee0® o
[°
=3 \ .
g 2 2 \ R 9
e - [CHTY \ o ® o 2
8 ° s N e °® - o
[° £ o . © =
> ®eo ° w .,. >
3 | ®0o0e0o,, g g;'
- g 2| ., 2
3 ° ./ ML I I ee| ©
o S ® Mean Squared Error
o ® WithinZ g © ® Squared Bias
- e Total © - ® Variance L e
O' o
T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
m m

FIGURE 15.10. Simulation results. The left panel shows the average variance of
a single random forest tree, as a function of m. “Within Z” refers to the average
within-sample contribution to the variance, resulting from the bootstrap sampling
and split-variable sampling (15.9). “Total” includes the sampling variability of
Z. The horizontal line is the average variance of a single fully grown tree (with-
out bootstrap sampling). The right panel shows the average mean-squared error,
squared bias and variance of the ensemble, as a function of m. Note that the
variance azis is on the right (same scale, different level). The horizontal line is
the average squared-bias of a fully grown tree.

15.4.2 Dias

As in bagging, the bias of a random forest is the same as the bias of any
of the individual sampled trees T'(x; O(Z)):

15.4 Analysis of Random Forests 601

Bias(z) = u(z) —Bzfu(x)
—) - BzBonT(x;0(Z)). (15.10)

This is also typically greater (in absolute terms) than the bias of an un-
pruned tree grown to Z, since the randomization and reduced sample space
impose restrictions. Hence the improvements in prediction obtained by bag-
ging or random forests are solely a result of variance reduction.

Any discussion of bias depends on the unknown true function. Fig-
ure 15.10 (right panel) shows the squared bias for our additive model simu-
lation (estimated from the 500 realizations). Although for different models
the shape and rate of the bias curves may differ, the general trend is that
as m decreases, the bias increases. Shown in the figure is the mean-squared
error, and we see a classical bias-variance trade-off in the choice of m. For
all m the squared bias of the random forest is greater than that for a single
tree (horizontal line).

These patterns suggest a similarity with ridge regression (Section 3.4.1).
Ridge regression is useful (in linear models) when one has a large number
of variables with similarly sized coefficients; ridge shrinks their coeflicients
toward zero, and those of strongly correlated variables toward each other.
Although the size of the training sample might not permit all the variables
to be in the model, this regularization via ridge stabilizes the model and al-
lows all the variables to have their say (albeit diminished). Random forests
with small m perform a similar averaging. Each of the relevant variables
get their turn to be the primary split, and the ensemble averaging reduces
the contribution of any individual variable. Since this simulation exam-
ple (15.8) is based on a linear model in all the variables, ridge regression
achieves a lower mean-squared error (about 0.45 with df(Aopy) =~ 29).

15.4.8 Adaptive Nearest Neighbors

The random forest classifier has much in common with the k-nearest neigh-
bor classifier (Section 13.3); in fact a weighted version thereof. Since each
tree is grown to maximal size, for a particular ©*, T'(x;©*(Z)) is the re-
sponse value for one of the training samples*. The tree-growing algorithm
finds an “optimal” path to that observation, choosing the most informative
predictors from those at its disposal. The averaging process assigns weights
to these training responses, which ultimately vote for the prediction. Hence
via the random-forest voting mechanism, those observations close to the
target point get assigned weights—an equivalent kernel-—which combine to
form the classification decision.

Figure 15.11 demonstrates the similarity between the decision boundary
of 3-nearest neighbors and random forests on the mixture data.

4We gloss over the fact that pure nodes are not split further, and hence there can be
more than one observation in a terminal node

602 15. Random Forests

Random Forest Classifier

3-Nearest Neighbors

L %
Training Error: 0.000 0
Test Error: 0.238

Bayes Error: 0.210 (0]

L %
Training Error: 0.130 0
Test Error: 0.242
Bayes Error: 0.210

FIGURE 15.11. Random forests versus 3-NN on the mizture data. The azis-ori-
ented nature of the individual trees in a random forest lead to decision regions
with an axis-oriented flavor.

Bibliographic Notes

Random forests as described here were introduced by Breiman (2001), al-
though many of the ideas had cropped up earlier in the literature in dif-
ferent forms. Notably Ho (1995) introduced the term “random forest,” and
used a consensus of trees grown in random subspaces of the features. The
idea of using stochastic perturbation and averaging to avoid overfitting was
introduced by Kleinberg (1990), and later in Kleinberg (1996). Amit and
Geman (1997) used randomized trees grown on image features for image
classification problems. Breiman (1996a) introduced bagging, a precursor
to his version of random forests. Dietterich (2000b) also proposed an im-
provement on bagging using additional randomization. His approach was
to rank the top 20 candidate splits at each node, and then select from the
list at random. He showed through simulations and real examples that this
additional randomization improved over the performance of bagging. Fried-
man and Hall (2007) showed that sub-sampling (without replacement) is
an effective alternative to bagging. They showed that growing and aver-
aging trees on samples of size N/2 is approximately equivalent (in terms
bias/variance considerations) to bagging, while using smaller fractions of
N reduces the variance even further (through decorrelation).

There are several free software implementations of random forests. In
this chapter we used the randomForest package in R, maintained by Andy
Liaw, available from the CRAN website. This allows both split-variable se-
lection, as well as sub-sampling. Adele Cutler maintains a random forest
website http://www.math.usu.edu/~adele/forests/ where (as of Au-
gust 2008) the software written by Leo Breiman and Adele Cutler is freely

Exercises 603

available. Their code, and the name “random forests”, is exclusively li-
censed to Salford Systems for commercial release. The Weka machine learn-
ing archive http://www.cs.waikato.ac.nz/ml/weka/ at Waikato Univer-
sity, New Zealand, offers a free java implementation of random forests.

Exercises

Ex. 15.1 Derive the variance formula (15.1). This appears to fail if p is
negative; diagnose the problem in this case.

Ex. 15.2 Show that as the number of bootstrap samples B gets large, the
0OB error estimate for a random forest approaches its N-fold CV error
estimate, and that in the limit, the identity is exact.

Ex. 15.3 Consider the simulation model used in Figure 15.7 (Mease and
Wyner, 2008). Binary observations are generated with probabilities

J
Pr(Y =11X)=q+(1-2¢) -1 X;>J/2|, (15.11)
j=1
where X ~ U[0,1]P, 0 < ¢ < %, and J < p is some predefined (even)
number. Describe this probability surface, and give the Bayes error rate.

Ex. 15.4 Suppose z;, i = 1,..., N are iid (u,0?). Let Z7 and z3 be two
bootstrap realizations of the sample mean. Show that the sampling cor-
relation corr(zy,75) = 505 ~ 50%. Along the way, derive var(zj) and

the variance of the bagged mean Z,4. Here 7 is a linear statistic; bagging
produces no reduction in variance for linear statistics.

Ex. 15.5 Show that the sampling correlation between a pair of random-
forest trees at a point x is given by
o) = Varz[EgzT (z; ©(Z))]
Varz[Eg 2T (z; ©(Z))] + EzVargz[T(z,0(Z)]

(15.12)

The term in the numerator is Varg [frf(x)], and the second term in the
denominator is the expected conditional variance due to the randomization
in random forests.

Ex. 15.6 Fit a series of random-forest classifiers to the spam data, to explore
the sensitivity to the parameter m. Plot both the OOB error as well as the
test error against a suitably chosen range of values for m.

604 15. Random Forests

Ex. 15.7 Suppose we fit a linear regression model to N observations with
response y; and predictors 1, ..., ;y. Assume that all variables are stan-
dardized to have mean zero and standard deviation one. Let RSS be the
mean-squared residual on the training data, and B the estimated coefficient.
Denote by RS S;f the mean-squared residual on the training data using the

same B, but with the N values for the jth variable randomly permuted
before the predictions are calculated. Show that

Ep[RSS; — RSS] = 232, (15.13)

where Ep denotes expectation with respect to the permutation distribution.
Argue that this is approximately true when the evaluations are done using
an independent test set.

