

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

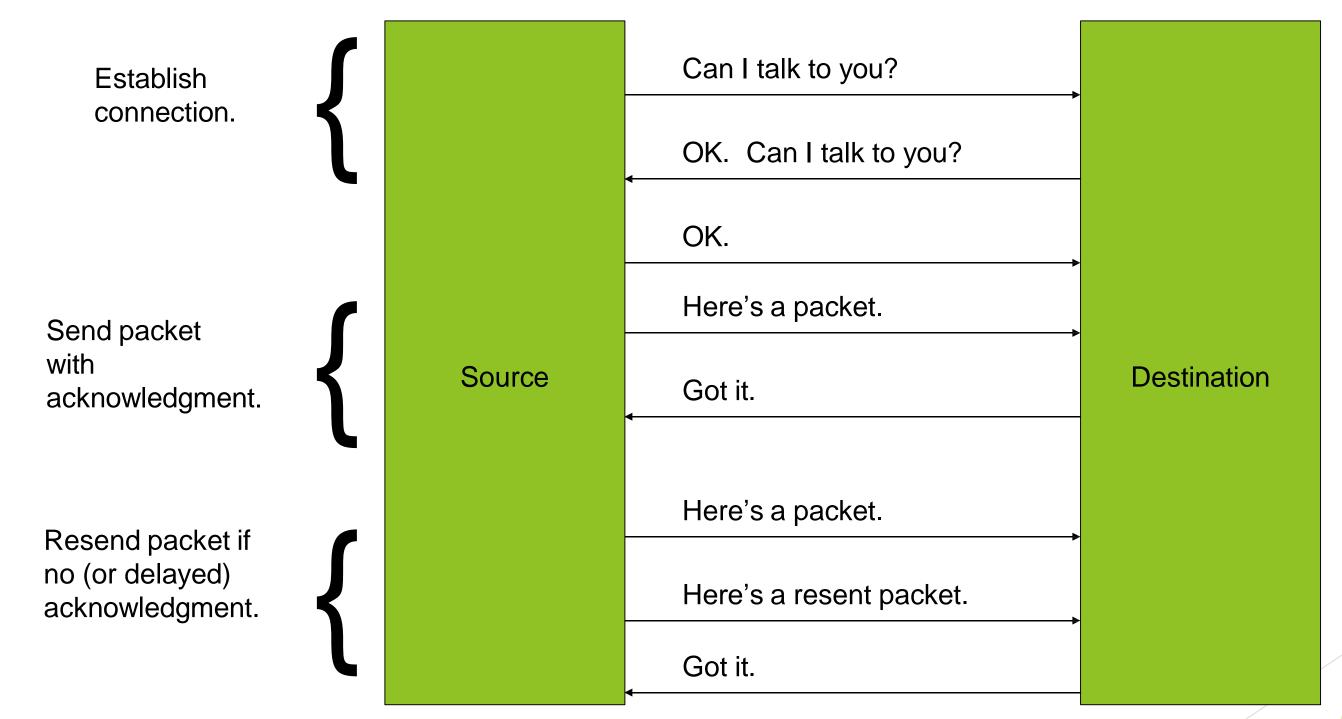
AI IN WEB TECHNOLOGY

III YEAR - VI SEM

UNIT 1 – INTRODUCTION TO WEB TECHNOLOGY AND DESIGN

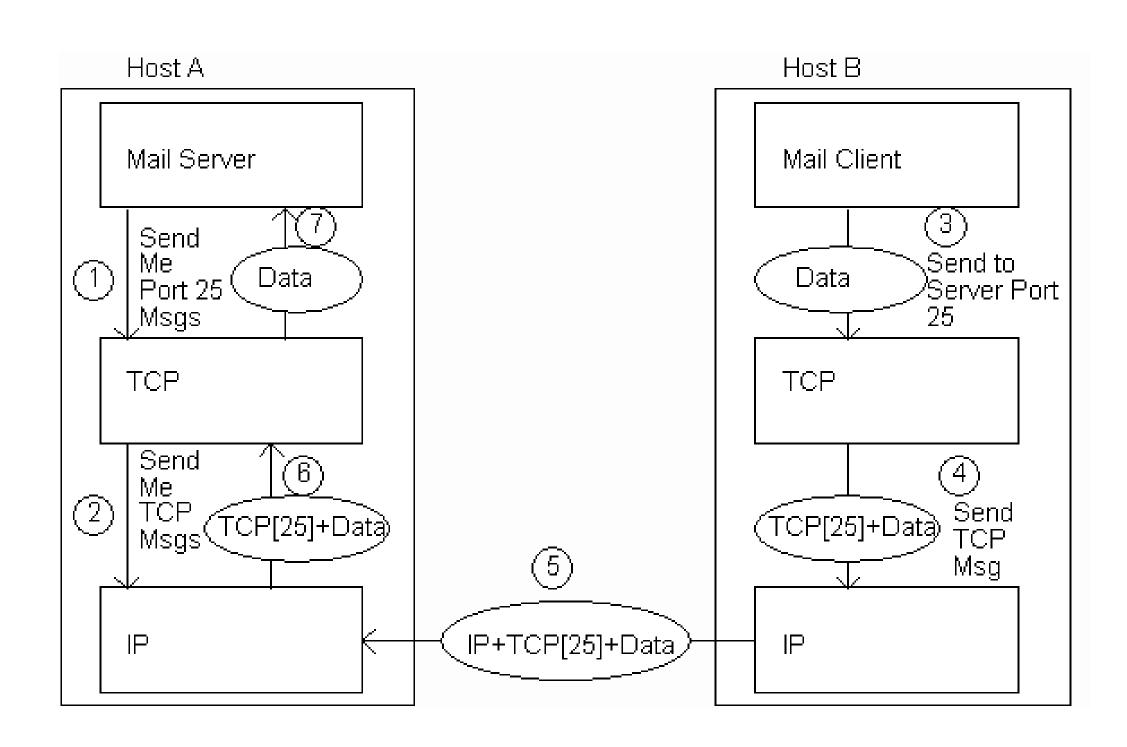
INTRODUCTION TO WEB TECHNOLOGY AND DESIGN

Transmission Control Protocol (TCP)



- Limitations of IP:
 - No guarantee of packet delivery (packets can be dropped)
 - Communication is one-way (source to destination)
- TCP adds concept of a connection on top of IP
 - Provides guarantee that packets delivered
 - Provide two-way (full duplex) communication

TCP



- TCP also adds concept of a port
 - ► TCP header contains port number representing an application program on the destination computer
 - ► Some port numbers have <u>standard meanings</u>
 - Example: port 25 is normally used for email transmitted using the Simple Mail Transfer Protocol (SMTP)
 - Other port numbers are available first-come-first served to any application

User Datagram Protocol (<u>UDP</u>)

- Like TCP in that:
 - Builds on IP
 - Provides port concept
- Unlike TCP in that:
 - No connection concept
 - No transmission guarantee
- Advantage of UDP vs. TCP:
 - ► Lightweight, so faster for one-time messages

- DNS is the "phone book" for the Internet
 - Map between host names and IP addresses
 - DNS often uses UDP for communication
- Host names
 - ► Labels separated by dots, e.g., www.example.org
 - Final label is <u>top-level domain</u>
 - Generic: .com, .org, etc.
 - ► Country-code: .us, .il, etc.

- Domains are divided into second-level domains, which can be further divided into subdomains, etc.
 - ► E.g., in www.example.com, example is a second-level domain
- A host name plus domain name information is called the fully qualified domain name of the computer
 - ► Above, www is the host name, <u>www.example.com</u> is the FQDN

DNS

- nslookup program provides command-line access to DNS (on most systems)
- looking up a host name given an IP address is known as a reverse lookup
 - Recall that single host may have multiple IP addresses.
 - Address returned is the canonical IP address specified in the DNS system.

DNS

- ipconfig (on windows) can be used to find the IP address (addresses) of your machine
- ipconfig /displaydns displays the contents of the DNS Resolver Cache
 (ipconfig /flushdns to flush it)

Analogy to Telephone Network

- ► IP ~ the telephone network
- ► TCP ~ calling someone who answers, having a conversation, and hanging up
- UDP ~ calling someone and leaving a message
- DNS ~ directory assistance

Higher-level Protocols

- Many protocols build on TCP
 - ► Telephone analogy: TCP specifies how we initiate and terminate the phone call, but some other protocol specifies how we carry on the actual conversation
- Some examples:
 - ► SMTP (email)
 - ► FTP (file transfer)
 - ► HTTP (transfer of Web documents)

World Wide Web

- Originally, one of several systems for organizing Internet-based information
 - ► Competitors: WAIS, Gopher, ARCHIE
- Distinctive feature of Web: support for hypertext (text containing links)
 - Communication via Hypertext Transfer Protocol (HTTP)
 - Document representation using Hypertext Markup Language (HTML)

World Wide Web

- ► The Web is the collection of machines (Web servers) on the Internet that provide information, particularly HTML documents, via HTTP.
- Machines that access information on the Web are known as Web clients.
- A Web browser is software used by an end user to access the Web.

Hypertext Transfer Protocol (HTTP)

- HTTP is based on the request-response communication model:
 - Client sends a request
 - Server sends a response
- ► HTTP is a stateless protocol:
 - ► The protocol does not require the server to remember anything about the client between requests.

HTTP

- Normally implemented over a TCP connection (80 is standard port number for HTTP)
- Typical browser-server interaction:
 - User enters Web address in browser
 - Browser uses DNS to locate IP address
 - Browser opens TCP connection to server
 - Browser sends HTTP request over connection
 - Server sends HTTP response to browser over connection
 - Browser displays body of response in the client area of the browser window

HTTP

- The information transmitted using HTTP is often entirely text
- Can use the Internet's Telnet protocol to simulate browser request and view server response

HTTP

HTTP Request

- Structure of the request:
 - start line
 - header field(s)
 - blank line
 - optional body

HTTP Request

- Structure of the request:
 - start line
 - header field(s)
 - blank line
 - optional body