
Debugging Node.js Applications
 Why Debugging is Important

Definition: Debugging is the process of identifying, analyzing, and fixing
bugs or errors in a program to ensure it behaves correctly.

Ensures application reliability and stability.
Helps identify logic errors, crashes, and performance issues.
Debugging is a skill every developer needs to master.
Prevents production failures and improves user experience.



 Common Issues in Node.js
Definition: Node.js applications often face issues like undefined variables,
asynchronous logic bugs, memory leaks, and poor error handling that
require careful debugging.

Undefined variables or modules
Asynchronous code errors (e.g., callbacks not handled)
Uncaught exceptions
Memory leaks
Improper error handling or use of try/catch



Built-in Debugging Tools
Definition: Node.js provides native tools like console.log, the debugger
statement, and the inspect mode to pause and analyze code during
execution.

console.log() – Simple, quick for basic inspection.
Debugger keyword – Pauses execution to inspect variables.



 Using VS Code Debugger
Definition: Visual Studio Code includes an integrated debugger that lets
you set breakpoints, inspect variables, and step through your Node.js code
visually.

Built-in Node.js debugging support.
Set breakpoints visually.
Inspect call stack, variables, and watch expressions.
Add a .vscode/launch.json file for custom debug configs.



Debugging with External Tools
Definition: Tools like ndb, Node Inspector, and PM2 enhance the
debugging experience by providing live code monitoring, breakpoints, and
better log management.

Node Inspector – Chrome-based debugger for Node.js.
ndb – Enhanced debugging experience via Chrome DevTools.
PM2 – Logs and monitors production Node.js apps.
Winston / Morgan – Logging libraries for advanced logging.



 Best Practices
Definition: Effective debugging involves writing clean code, logging
thoughtfully, using proper error handling, and leveraging reliable tools to
trace and fix bugs efficiently.

Use console.log() sparingly in production.
Always handle async errors with .catch() or try/catch.
Use logging libraries for structured logging.
Don’t ignore stack traces — read and trace them!
Write unit tests to prevent regressions.



Summary & Tips

Start simple: use logs, then step into debugging tools.
Use VS Code or Chrome DevTools for efficient
inspection.
Learn async flow: mastering Promises and async/await
helps debugging.
Keep calm and debug smart!


